In Europe, poroelastic road surface (PERS) material is being tested to a level at which it can be applied on different types of roads as a noise-reducing pavement. Traffic noise reductions of around 10–12 dB have been achieved using PERS in comparison to a conventional dense asphalt concrete. The PERS material is designed as an open-graded mix to have at least 20% air voids by volume.
The objective of this research study was to evaluate the effect of six different confinement levels on the E * dynamic modulus testing of PERS mixtures. The major aim of utilising confinement on PERS materials was specifically to simulate and assess field performance characteristics of those mixes in the laboratory. Furthermore, the choice for confinement is essential in order to obtain realistic test results for a porous or open-graded aggregate structure of the PERS mix. AASHTO TP 62-07 was utilised for dynamic modulus E * testing; for confined tests, a lateral air pressure was provided that simulated confining effect on the samples. Confined tests were conducted only on the two variants of the PERS mixtures that had about 50% or greater amount of aggregates by volume of the mix. Moduli (E *) and phase angle (φ) master curves were established using the test results.