Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Removal of organotin compounds and metals from Swedish marine sediment using Fenton’s reagent and electrochemical treatment
Chalmers University of Technology, Sweden.
Chalmers University of Technology, Sweden.
Chalmers University of Technology, Sweden.
Chalmers University of Technology, Sweden.
Show others and affiliations
2022 (English)In: Environmental Science and Pollution Research, ISSN 0944-1344, E-ISSN 1614-7499Article in journal (Refereed) Epub ahead of print
Abstract [en]

Metal and tributyltin (TBT) contaminated sediments are problematic for sediment managers and the environment. This study is the first to compare Fenton’s reagent and electrochemical treatment as remediation methods for the removal of TBT and metals using laboratory-scale experiments on contaminated dredged sediment. The costs and the applicability of the developed methods were also compared and discussed. Both methods removed > 98% TBT from TBT-spiked sediment samples, while Fenton’s reagent removed 64% of the TBT and electrolysis 58% of the TBT from non-spiked samples. TBT in water phase was effectively degraded in both experiments on spiked water and in leachates during the treatment of the sediment. Positive correlations were observed between TBT removal and the added amount of hydrogen peroxide and current density. Both methods removed metals from the sediment, but Fenton’s reagent was identified as the most potent option for effective removal of both metals and TBT, especially from highly metal-contaminated sediment. However, due to risks associated with the required chemicals and low pH level in the sediment residue following the Fenton treatment, electrochemical treatment could be a more sustainable option for treating larger quantities of contaminated sediment. © 2022, The Author(s).

Place, publisher, year, edition, pages
Springer Science and Business Media Deutschland GmbH , 2022.
National Category
Environmental Sciences
Identifiers
URN: urn:nbn:se:vti:diva-17692DOI: 10.1007/s11356-021-17554-8ISI: 000739287800010PubMedID: 34985631Scopus ID: 2-s2.0-85122333809OAI: oai:DiVA.org:vti-17692DiVA, id: diva2:1646976
Available from: 2022-03-24 Created: 2022-03-24 Last updated: 2022-03-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Andersson-Sköld, Yvonne

Search in DiVA

By author/editor
Andersson-Sköld, Yvonne
By organisation
Environment
In the same journal
Environmental Science and Pollution Research
Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf