Publications
Change search
Refine search result
1 - 27 of 27
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahlström, Christer
    et al.
    Swedish National Road and Transport Research Institute, Traffic and road users, Human-vehicle-transport system interaction.
    Kircher, Katja
    Swedish National Road and Transport Research Institute, Traffic and road users, Human-vehicle-transport system interaction.
    Rydström, Annie
    Volvo Car Corperation.
    Nåbo, Arne
    SAAB Automobile.
    Almgren, Susanne
    SAAB Automobile.
    Ricknäs, Daniel
    Scania.
    Effects of visual, cognitive and haptic tasks on driving performance indicators2012In: Advances in Human Aspects of Road and Rail Transportation / [ed] Neville A . Stanton, San Francisco, USA: CRC Press , 2012, p. 673-682Conference paper (Refereed)
    Abstract [en]

    A driving simulator study was conducted by using the same setup in two driving simulators, one with a moving base and one with a fixed base. The aim of the study was to investigate a selection of commonly used performance indicators (PIs) for their sensitivity to secondary tasks loading on different modalities and levels of difficulty, and to evaluate their robustness across simulator platforms. The results showed that, across platforms, the longitudinal PIs behaved similarly whereas the lateral control and eye movement based performance indicators differed. For modality, there were considerable effects on lateral, longitudinal as well as eye movement PIs. However, there were only limited differences between the baseline and the cognitive and haptic tasks. For difficulty, clear effects on PIs related to lateral control and eye movements were shown. Additionally, it should be noted that there were large individual differences for several of the PIs. In conclusion, many of the most commonly used PIs are susceptible to individual differences, and, especially the PIs for lateral control, to the platform and environment where they are acquired, which is why generalizations should be made with caution.

  • 2.
    Andersson, Anders
    et al.
    Swedish National Road and Transport Research Institute, Traffic and road users, Vehicle Systems and Driving Simulation..
    Blissing, Björn
    Swedish National Road and Transport Research Institute, Traffic and road users, Vehicle Systems and Driving Simulation..
    Carlsson, Håkan
    Swedish National Road and Transport Research Institute, Infrastructure, Measurement technology and engineering workshop.
    Erlingsson, Sigurdur
    Swedish National Road and Transport Research Institute, Infrastructure, Pavement Technology.
    Hellman, Fredrik
    Swedish National Road and Transport Research Institute, Infrastructure, Pavement Technology.
    Hjort, Mattias
    Swedish National Road and Transport Research Institute, Traffic and road users, Vehicle Systems and Driving Simulation..
    Ihs, Anita
    Swedish National Road and Transport Research Institute, Infrastructure.
    Kuttah, Dina K
    Swedish National Road and Transport Research Institute, Infrastructure, Pavement Technology.
    Nåbo, Arne
    Swedish National Road and Transport Research Institute, Traffic and road users, Driver and vehicle.
    Thorslund, Birgitta
    Swedish National Road and Transport Research Institute, Traffic and road users, Driver and vehicle.
    Designguide för Smarta gator2022Report (Other academic)
    Abstract [sv]

    Sammanfattningsvis definierar vi i denna guide ’smarta gator’ kort sagt som mångfunktionella, levande, långsamma, ekologiska och flexibla gator. Det övergripande målet med denna guide är följaktligen ”Smarta gator för en hållbar stadsutveckling”.

    Download full text (pdf)
    FULLTEXT01
  • 3.
    Aramrattana, Maytheewat
    et al.
    Swedish National Road and Transport Research Institute, Traffic and road users, Driving Simulation and Visualization. Högskolan i Halmstad.
    Englund, Cristofer
    RISE Viktoria & Högskolan i Halmstad, CAISR Centrum för tillämpade intelligenta system (IS-lab).
    Jansson, Jonas
    Swedish National Road and Transport Research Institute, Traffic and road users.
    Larsson, Tony
    Högskolan i Halmstad.
    Nåbo, Arne
    Swedish National Road and Transport Research Institute, Traffic and road users, Driving Simulation and Visualization.
    Safety Analysis of Cooperative Adaptive Cruise Control in Vehicle Cut-in Situations2017In: Proceedings of 2017 4th International Symposium on Future Active Safety Technology towards Zero-Traffic-Accidents (FAST-zero), Society of Automotive Engineers of Japan , 2017, article id 20174621Conference paper (Refereed)
    Abstract [en]

    Cooperative adaptive cruise control (CACC) is a cooperative intelligent transport systems (C-ITS) function, which especially when used in platooning applications, possess many expected benefits including efficient road space utilization and reduced fuel consumption. Cut-in manoeuvres in platoons can potentially reduce those benefits, and are not desired from a safety point of view. Unfortunately, in realistic traffic scenarios, cut-in manoeuvres can be expected, especially from non-connected vehicles. In this paper two different controllers for platooning are explored, aiming at maintaining the safety of the platoon while a vehicle is cutting in from the adjacent lane. A realistic scenario, where a human driver performs the cut-in manoeuvre is used to demonstrate the effectiveness of the controllers. Safety analysis of CACC controllers using time to collision (TTC) under such situation is presented. The analysis using TTC indicate that, although potential risks are always high in CACC applications such as platooning due to the small inter-vehicular distances, dangerous TTC (TTC < 6 seconds) is not frequent. Future research directions are also discussed along with the results.

    Download full text (pdf)
    FULLTEXT01
  • 4.
    Aramrattana, Maytheewat
    et al.
    Swedish National Road and Transport Research Institute, Traffic and road users, Vehicle Systems and Driving Simulation..
    Larsson, Tony
    Halmstad University.
    Englund, Cristofer
    Halmstad University.
    Jansson, Jonas
    Swedish National Road and Transport Research Institute, Traffic and road users.
    Nåbo, Arne
    Swedish National Road and Transport Research Institute, Traffic and road users, Driver and vehicle.
    A Novel Risk Indicator for Cut-In Situations2020In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020, Institute of Electrical and Electronics Engineers Inc. , 2020Conference paper (Refereed)
    Abstract [en]

    Cut-in situations occurs when a vehicle intentionally changes lane and ends up in front of another vehicle or in-between two vehicles. In such situations, having a method to indicate the collision risk prior to making the cut-in maneuver could potentially reduce the number of sideswipe and rear end collisions caused by the cut-in maneuvers. This paper propose a new risk indicator, namely cut-in risk indicator (CRI), as a way to indicate and potentially foresee collision risks in cut-in situations. As an example use case, we applied CRI on data from a driving simulation experiment involving a manually driven vehicle and an automated platoon in a highway merging situation. We then compared the results with time-to-collision (TTC), and suggest that CRI could correctly indicate collision risks in a more effective way. CRI can be computed on all vehicles involved in the cut-in situations, not only for the vehicle that is cutting in. Making it possible for other vehicles to estimate the collision risk, for example if a cut-in from another vehicle occurs, the surrounding vehicles could be warned and have the possibility to react in order to potentially avoid or mitigate accidents.

  • 5.
    Aramrattana, Maytheewat
    et al.
    Swedish National Road and Transport Research Institute, Traffic and road users, Vehicle Systems and Driving Simulation..
    Larsson, Tony
    Halmstad University.
    Englund, Cristofer
    Halmstad University.
    Jansson, Jonas
    Swedish National Road and Transport Research Institute, Traffic and road users.
    Nåbo, Arne
    Swedish National Road and Transport Research Institute, Traffic and road users, Driver and vehicle.
    A Simulation Study on Effects of Platooning Gaps on Drivers of Conventional Vehicles in Highway Merging Situations2020In: IEEE transactions on intelligent transportation systems (Print), ISSN 1524-9050, E-ISSN 1558-0016Article in journal (Refereed)
    Abstract [en]

    Platooning refers to a group of vehicles that--enabled by wireless vehicle-to-vehicle (V2V) communication and vehicle automation--drives with short inter-vehicular distances. Before its deployment on public roads, several challenging traffic situations need to be handled. Among the challenges are cut-in situations, where a conventional vehicle--a vehicle that has no automation or V2V communication--changes lane and ends up between vehicles in a platoon. This paper presents results from a simulation study of a scenario, where a conventional vehicle, approaching from an on-ramp, merges into a platoon of five cars on a highway. We created the scenario with four platooning gaps: 15, 22.5, 30, and 42.5 meters. During the study, the conventional vehicle was driven by 37 test persons, who experienced all the platooning gaps using a driving simulator. The participants' opinions towards safety, comfort, and ease of driving between the platoon in each gap setting were also collected through a questionnaire. The results suggest that a 15-meter gap prevents most participants from cutting in, while causing potentially dangerous maneuvers and collisions when cut-in occurs. A platooning gap of at least 30 meters yield positive opinions from the participants, and facilitating more smooth cut-in maneuvers while less collisions were observed.

  • 6.
    Aramrattana, Maytheewat
    et al.
    Swedish National Road and Transport Research Institute, Traffic and road users, Driving Simulation and Visualization. Högskolan i Halmstad.
    Larsson, Tony
    Högskolan i Halmstad.
    Englund, Cristofer
    RISE Viktoria & Högskolan i Halmstad, CAISR Centrum för tillämpade intelligenta system (IS-lab).
    Jansson, Jonas
    Swedish National Road and Transport Research Institute, Traffic and road users.
    Nåbo, Arne
    Swedish National Road and Transport Research Institute, Traffic and road users, Driving Simulation and Visualization.
    Simulation of Cut-In by Manually Driven Vehicles in Platooning Scenarios2017In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), 2017, p. 315-320Conference paper (Refereed)
    Abstract [en]

    In the near future, Cooperative Intelligent Transport System (C-ITS) applications are expected to be deployed. To support this, simulation is often used to design and evaluate the applications during the early development phases. Simulations of C-ITS scenarios often assume a fleet of homogeneous vehicles within the transportation system. In contrast, once C-ITS is deployed, the traffic scenarios will consist of a mixture of connected and non-connected vehicles, which, in addition, can be driven manually or automatically. Such mixed cases are rarely analysed, especially those where manually driven vehicles are involved. Therefore, this paper presents a C-ITS simulation framework, which incorporates a manually driven car through a driving simulator interacting with a traffic simulator, and a communication simulator, which together enable modelling and analysis of C-ITS applications and scenarios. Furthermore, example usages in the scenarios, where a manually driven vehicle cut-in to a platoon of Cooperative Adaptive Cruise Control (CACC) equipped vehicles are presented.

    Download full text (pdf)
    FULLTEXT01
  • 7.
    Aramrattana, Maytheewat
    et al.
    Swedish National Road and Transport Research Institute, Traffic and road users, Körsimulering och visualisering, SIM. Högskolan i Halmstad.
    Larsson, Tony
    Högskolan i Halmstad.
    Jansson, Jonas
    Swedish National Road and Transport Research Institute, Traffic and road users.
    Nåbo, Arne
    Swedish National Road and Transport Research Institute, Traffic and road users, Körsimulering och visualisering, SIM.
    A simulation framework for cooperative intelligent transport systems testing and evaluation2017In: Transportation Research Part F: Traffic Psychology and Behaviour, ISSN 1369-8478, E-ISSN 1873-5517Article in journal (Refereed)
    Abstract [en]

    Connected and automated driving in the context of cooperative intelligent transport systems (C-ITS) is an emerging area in transport systems research. Interaction and cooperation between actors in transport systems are now enabled by the connectivity by means of vehicle-to-vehicle and vehicle-to-infrastructure (V2X) communication. To ensure the goals of C-ITS, which are safer and more efficient transport systems, testing and evaluation are required before deployment of C-ITS applications. Therefore, this paper presents a simulation framework-consisting of driving-, traffic-, and network-simulators-for testing and evaluation of C-ITS applications. Examples of cooperative adaptive cruise control (CACC) applications are presented, and are used as test cases for the simulation framework as well as to elaborate on potential use cases of it. Challenges from combining the simulators into one framework, and limitations are reported and discussed. Finally, the paper concludes with future development directions, and applications of the simulation framework in testing and evaluation of C-ITS.

  • 8.
    Aramrattana, Maytheewat
    et al.
    Swedish National Road and Transport Research Institute, Traffic and road users, Driving Simulation and Visualization. Högskolan i Halmstad.
    Larsson, Tony
    Högskolan i Halmstad.
    Jansson, Jonas
    Swedish National Road and Transport Research Institute, Traffic and road users.
    Nåbo, Arne
    Swedish National Road and Transport Research Institute, Traffic and road users, Driving Simulation and Visualization.
    A simulation framework for cooperative intelligent transport systems testing and evaluation2017In: Transportation Research Part F: Traffic Psychology and Behaviour, ISSN 1369-8478, E-ISSN 1873-5517Article in journal (Refereed)
    Abstract [en]

    Connected and automated driving in the context of cooperative intelligent transport systems (C-ITS) is an emerging area in transport systems research. Interaction and cooperation between actors in transport systems are now enabled by the connectivity by means of vehicle-to-vehicle and vehicle-to-infrastructure (V2X) communication. To ensure the goals of C-ITS, which are safer and more efficient transport systems, testing and evaluation are required before deployment of C-ITS applications. Therefore, this paper presents a simulation framework—consisting of driving-, traffic-, and network-simulators—for testing and evaluation of C-ITS applications. Examples of cooperative adaptive cruise control (CACC) applications are presented, and are used as test cases for the simulation framework as well as to elaborate on potential use cases of it. Challenges from combining the simulators into one framework, and limitations are reported and discussed. Finally, the paper concludes with future development directions, and applications of the simulation framework in testing and evaluation of C-ITS. © 2017 Elsevier Ltd. All rights reserved.

  • 9.
    Aramrattana, Maytheewat
    et al.
    Swedish National Road and Transport Research Institute, Traffic and road users, Driving Simulation and Visualization. Högskolan i Halmstad.
    Larsson, Tony
    Högskolan i Halmstad.
    Jansson, Jonas
    Swedish National Road and Transport Research Institute, Traffic and road users.
    Nåbo, Arne
    Swedish National Road and Transport Research Institute, Traffic and road users, Driving Simulation and Visualization.
    Cooperative Driving Simulation2016In: Proceedings of the Driving Simulation Conference 2016, 2016, p. 123-132Conference paper (Refereed)
    Abstract [en]

    For a few decades, driving simulators have been supporting research and development of advanced driver assistance systems (ADAS). In the near future, connected vehicles are expected to be deployed. Driving simulators will need to support evaluation of cooperative driving applications within cooperative intelligent transportation systems (C-ITS) scenarios. C-ITS utilize vehicle-to-vehicle and vehicle-to-infrastructure (V2X) communication. Simulation of the inter vehicle communication is often not supported in driving simulators. On the other hand, previous efforts have been made to connect network simulators and traffic simulators, to perform C-ITS simulations. Nevertheless, interactions between actors in the system is an essential aspect of C-ITS. Driving simulators can provide the opportunity to study interactions and reactions of human drivers to the system. This paper present simulation of a C-ITS scenario using a combination of driving, network, and traffic simulators. The architecture of the solution and important challenges of the integration are presented. A scenario from Grand Cooperative Driving Challenge (GCDC) 2016 is implemented in the simulator as an example use case. Lastly, potential usages and future developments are discussed.

  • 10.
    Aramrattana, Maytheewat
    et al.
    Swedish National Road and Transport Research Institute, Traffic and road users, Körsimulering och visualisering, SIM. Halmstad University.
    Larsson, Tony
    Halmstad University.
    Jansson, Jonas
    Swedish National Road and Transport Research Institute, Traffic and road users.
    Nåbo, Arne
    Swedish National Road and Transport Research Institute, Traffic and road users, Körsimulering och visualisering, SIM.
    Extended Driving Simulator for Evaluation of Cooperative Intelligent Transport Systems2016In: Proceedings of the 2016 annual ACM Conference on SIGSIM Principles of Advanced Discrete Simulation (SIGSIM-PADS '16), New York, NY, USA: ACM Digital Library, 2016, p. 255-258Conference paper (Refereed)
    Abstract [en]

    Vehicles in cooperative intelligent transport systems (C-ITS) often need to interact with each other in order to achieve their goals, safe and efficient transport services. Since human drivers are still expected to be involved in C-ITS, driving simulators are appropriate tools for evaluation of the C-ITS functions. However, driving simulators often simplify the interactions or influences from the ego vehicle on the traffic. Moreover, they normally do not support vehicle-to-vehicle and vehicle-to-infrastructure (V2X) communication, which is the main enabler for C-ITS. Therefore, to increase the C-ITS evaluation capability, a solution on how to extend a driving simulator with traffic and network simulators to handle cooperative systems is presented as a result of this paper. Evaluation of the result using two use cases is presented. And, the observed limitations and challenges of the solution are reported and discussed.

  • 11.
    Bhatti, Harrison John
    et al.
    Swedish National Road and Transport Research Institute, Traffic and road users, Vehicle Systems and Driving Simulation.. Innovation and Sustainability, School of Business, Halmstad University, Sweden.
    Danilovic, Mike
    Innovation and Sustainability, School of Business, Halmstad University, Sweden; School of Business, Shanghai Dianji University, China; Centre for Innovation Research (CIRCLE), Lund University, Sweden.
    Nåbo, Arne
    Swedish National Road and Transport Research Institute, Traffic and road users, Driver and vehicle.
    A Multidimensional Readiness Index for the Electrification of the Transportation System in China, Norway, and Sweden2023In: Future Transportation, E-ISSN 2673-7590, Vol. 3, no 4, p. 1360-1384Article in journal (Refereed)
    Abstract [en]

    The main objective of this paper is to develop a readiness index model that can serve as an analytical tool for exploring the achievements of the electrification of transportation systems. We have applied this readiness index model to evaluate the readiness positioning of China, Norway, and Sweden towards transportation electrification. We have chosen these three countries as they represent diversity among countries adopting electric transportation system solutions. Our developed readiness index model has four key dimensions: technological readiness, political readiness, societal readiness, and economic readiness. The embeddedness of all four dimensions in one model provides a multi-perspective way of analyzing and evaluating the readiness levels of countries moving towards transforming their transportation system. Therefore, we named the model a “multidimensional readiness index”. Our main conclusions are that political processes and decisiveness are the most important factors, followed by societal needs and economic ability, with the current technology as the fourth. Without the participation of dedicated and determined political decision makers, the other three factors are challenging to obtain. Political decision makers need to facilitate economic means to support the transformation in society and affected industries to balance the economic disadvantages of the electrically powered vehicle systems until they pass the cost disadvantage turning point. The development of relevant technology is no longer the significant barrier it was at the beginning of this transformation about 20 years ago. The technology for electrically powered transportation systems and devices is widely available now, although it is continuously evolving and being improved. Associated industries cannot be expected to initiate, finance, take risks, and take the lead in this global societal transformation without clear and strong political support.

    Download full text (pdf)
    fulltext
  • 12.
    Bhatti, Harrison John
    et al.
    Swedish National Road and Transport Research Institute, Traffic and road users, Vehicle Systems and Driving Simulation.. Högskolan i Halmstad, Akademin för företagande, innovation och hållbarhet.
    Danilovic, Mike
    Högskolan i Halmstad, Akademin för företagande, innovation och hållbarhet.
    Nåbo, Arne
    Swedish National Road and Transport Research Institute, Traffic and road users, Driver and vehicle.
    A System Approach to Electrification of Transportation: An International Comparison2022Report (Other academic)
    Abstract [en]

    Globally, the transportation system is transforming from a fossil-based to an electrification system. Some countries are leading in the transformation process. Some countries are rapidly catching up to become market leaders in developing and introducing new techniques and equipment that support the transformation process in their countries. In contrast, others are still relying on their old fossil-based system or could not have enough understanding of how to deal with this complex transformation of the transportation system.

    The electrification of the transportation system is not an isolated system that can be handled as a single technological element. It is a group of multiple technologies, political, societal, and economic sub-systems each of these sub-systems is embedded in each other, forming the whole system. Therefore, it is important to see and manage the system from a holistic perspective to transform the transportation electrification system efficiently. We have selected eight countries from three different continents – Asia (China, India), Australia, which is a country and continent, and Europe (Germany, Norway, Slovenia, Sweden, and the UK) to explore the transformational process of transportation electrification based on each countries’ conditions. We have chosen these continents as they are diversified in adopting transportation electrification system solutions.

    Our main conclusions are that the political processes and political decisiveness are the most important, followed by the societal and economic, with technology as the fourth. The other three are difficult to obtain without dedicated and determined political decision-makers. Political decision-makers need to use economic means to support the transformation in society and industry to balance the economic disadvantage of electric systems until they pass the cost disadvantage turning point. Technology is no longer a significant barrier as it was about 20 years ago. Now, technology is available, although it can be improved. The important part is to understand how to utilize the existing technology efficiently to transform the old fossil-based transportation system into new electrification of the transportation system. Without clear and strong political support, the industry cannot be expected to initiate, finance, take risks, and take the lead in this global societal transformation.

    Download full text (pdf)
    FULLTEXT01
  • 13.
    Bhatti, Harrison John
    et al.
    Swedish National Road and Transport Research Institute, Traffic and road users, Vehicle Systems and Driving Simulation.. Halmstad University, School of Business, Innovation and Sustainability, Sweden..
    Danilovic, Mike
    Halmstad University, School of Business, Innovation and Sustainability, Sweden; Lund University, Lund, Sweden.
    Nåbo, Arne
    Swedish National Road and Transport Research Institute, Traffic and road users, Driver and vehicle.
    Multidimensional Readiness Index for Electrification of Transportation System in China, Norway, and Sweden2022Report (Other academic)
    Abstract [en]

    The main objective of this paper is to develop a readiness index model that can serve as an analytical tool for exploring the achievements of electrification of transportation systems. We have applied this readiness index model to evaluate the readiness positioning of China, Norway, and Sweden towards transport electrification. We have chosen these three countries as they represent diversity among countries that are in the process of adopting electrified transport system solutions. Our developed readiness index model has four key dimensions, technological readiness, political readiness, societal readiness, and economic readiness. The embeddedness of all four dimensions in one model provides a multi-perspective way of analyzing and evaluating the readiness levels of countries moving towards transforming the transportation system. Therefore, we named the model a “multidimensional readiness index.”

    Download full text (pdf)
    fulltext
  • 14.
    Bhatti, Harrison John
    et al.
    Swedish National Road and Transport Research Institute, Traffic and road users, Vehicle Systems and Driving Simulation.. Akademin för företagande, innovation och hållbarhet, Högskolan i Halmstad, Sverige.
    Danilovic, Mike
    Akademin för företagande, innovation och hållbarhet, Högskolan i Halmstad, Sverige.
    Nåbo, Arne
    Swedish National Road and Transport Research Institute, Traffic and road users, Driver and vehicle.
    Käck, Andreas
    Swedish National Road and Transport Research Institute, Traffic and road users, Vehicle Systems and Driving Simulation..
    Electric Roads: Energy Supplied by Local Renewable Energy Sources and Microgrid Distribution System2019Conference paper (Other academic)
    Abstract [en]

    The electric road system is an emerging concept in this modern era. The advancement of technology has made it possible to give this concept a real shape (electric road system). However, the energy provided to the electric roads is still produced by non-renewable energy sources, which are completely unhealthy and harmful for society. Furthermore, the traditional grid is not suited to integrate with decentralized/localized energy generation and distribution systems. It is an ineffectual and environmentally extravagant system. Therefore, the preliminary contribution of this research is to introduce a decentralized/localized energy generation system based on renewable energy sources and energy distribution to electric roads through the emerging technology of microgrid and smart grid systems, which have the capability to integrate with renewable energy sources easily. Thus, producing electricity with renewable energy sources is environmentally friendly, less expensive, and available without charges. However, each source of energy has some environmental impacts and cost differences. A brief description of the environmental and cost impact of renewable energy sources (wind, solar) is also presented.

    Download full text (pdf)
    Extended abstract
  • 15.
    Danilovic, Mike
    et al.
    Halmstad University, Sweden; Shanghai Dianji University, China..
    Liu, Jasmine Lihua
    Lund University, Sweden; Shanghai Dianji University, China.
    Müllern, Tomas
    Jönköping University, Sweden..
    Nåbo, Arne
    Swedish National Road and Transport Research Institute, Traffic and road users, Driver and vehicle.
    Almestrand Linné, Philip
    Swedish National Road and Transport Research Institute, Society, environment and transport, Environment.
    Exploring battery-swapping for electric vehicles in China 1.02021Report (Other academic)
    Abstract [en]

    In this report we explore the situation in China vis-à-vis battery-swapping technology, its history, the current level of achievements, direction of the technology and its implications for society. We have chosen to explore battery-swapping solutions because they are complementary to stationary charging piles, and because their introduction in China has been ongoing since 2010. We want to understand the motivation, drives and barriers to this development and explore the underlying technical as well as the business aspects of establishing and expanding these new solutions. As researchers, it is our ambition to explore and understand the underling aspects, motives and drivers as well as conditions, challenges and consequences, in this case, the introduction of battery-swapping systems. Battery-swapping is not new. It was explored in Europe, Israel and the USA before China took the initiative to develop large scale swapping systems. This is explored in the Appendix to provide a historical and context-based understanding of its origin and global status in order to better understand the Chinese situation. Our focus is initially on new energy vehicles (NEV), more specific the segment of small electric cars. We are aware that there are also buses, trucks, heavy duty vehicles, small sized two- and three wheelers etc. that use battery-swapping technology, however, they are not focused upon in this paper.

    Download full text (pdf)
    fulltext
  • 16.
    Kircher, Katja
    et al.
    Swedish National Road and Transport Research Institute, Traffic and road users, Human-vehicle-transport system interaction.
    Ahlström, Christer
    Swedish National Road and Transport Research Institute, Traffic and road users, Human-vehicle-transport system interaction.
    Rydström, Annie
    Volvo Cars.
    Ljung Aust, Mikael
    Volvo Cars.
    Ricknäs, Daniel
    Scania.
    Almgren, Susanne
    Saab Automobile.
    Nåbo, Arne
    Swedish National Road and Transport Research Institute, Traffic and road users, Human-vehicle-transport system interaction.
    Secondary Task Workload Test Bench – 2TB: final report2014Report (Other academic)
    Abstract [en]

    The main aim of this study was to investigate a selection of commonly used performance indicators (PIs) that have been reported to be sensitive to distraction and workload. More specifically, the PIs were tested for their ability to differentiate between task modalities (visual, cognitive and haptic) and task difficulty (easy, medium and hard). It was investigated whether possible differences were constant across two traffic situations (with/without lead vehicle) and two driving simulators. The experiment was conducted in the VTI Driving Simulator III, an advanced moving-base simulator, and in the Volvo Car Corporation driving simulator, an advanced fixed-base simulator. Both simulators were equipped with Smart Eye Pro eye tracking systems. A visual, a cognitive and a haptic secondary task were chosen to test the ability of the PIs to distinguish between the tasks’ loading on different modalities. Some of the main results from the study were:

    • There were only minor differences between the two simulators for driving behaviour as described by longitudinal PIs. There was no overall offset, and the main difference was that the visual task led to stronger speed reductions in the moving-base simulator, which influenced both the mean speed and the speeding index.
    • Regarding lateral PIs, major differences between the two simulators were found, both as a general offset and for those factor combinations that include modality and task difficulty level.
    • With the visual or the haptic task active, the drivers positioned themselves further to the left and the variation in lateral position was higher in the fixed-base simulator.
    • The number of lane crossings did not differ considerably between the simulators, but the lane departure area was larger on average in the fixed-base simulator, again influenced by modality, with the largest lane departure areas for the visual task, and in the case of the fixed-base simulator for the haptic task as well.
    • Most of the eye movement related PIs had a general offset between the simulators. The drivers in the fixed-base simulator accumulated more time with their eyes off the road, especially during the visual and the cognitive tasks, while the drivers in the moving-base simulator cast longer single glances at the display.
    Download full text (pdf)
    fulltext
  • 17.
    Lihua Liu, Jasmine
    et al.
    Lund university.
    Dong, Ran
    Halmstad university.
    Danilovic, Mike
    Halmstad university.
    Nåbo, Arne (Contributor)
    Swedish National Road and Transport Research Institute, Traffic and road users, Driver and vehicle.
    Almestrand Linné, Philip (Contributor)
    Swedish National Road and Transport Research Institute, Society, environment and transport, Environment.
    Electrification of the transportation system in China: exploring battery technology for electrical vehicles in China 1.02021Report (Other academic)
    Abstract [en]

    Batteries is one of the main systems of electric vehicle. Batteries determine the total performance and define the capabilities of the electric vehicle regardless it is a passenger vehicle or heavy truck. Batteries are also determining the total price of the electric vehicle to large extend. In this report we are focusing on the technology development in historic perspective of the last 15 years in China. We see that the lithium-ion technology is the dominant technology, but we also see new emerging battery technologies that might be the game changer for the performance of electric vehicles. We demonstrate the dynamics of main battery technologies, LFP (lithium iron manganese, LiFeO4, battery cell) battery and NMC (lithium nickel manganese cobalt oxide battery cell) battery, the distribution of installed volumes between LFP and NMC in the Chinese market.

    Download full text (pdf)
    fulltext
  • 18.
    Lihua Liu, Jasmine
    et al.
    Lund university.
    Zu, Shendong
    Shanghai Dianji University, China.
    Danilovic, Mike
    Halmstad university.
    Nåbo, Arne (Contributor)
    Swedish National Road and Transport Research Institute, Traffic and road users, Driver and vehicle.
    Almestrand Linné, Philip (Contributor)
    Swedish National Road and Transport Research Institute, Society, environment and transport, Environment.
    Electrification of the transportation system in China: exploring inductive charging technology for electric vehicles in China 1.02021Report (Other academic)
    Abstract [en]

    In 2020, there were about 360 million vehicles in China, of which 270 million were passenger vehicles, accounting for 75% of the total number of motor vehicles, while the new energy vehicle population was 4.17 million, a year-on-year increase of 9.45%. According to the forecast of the State Grid Electric Vehicle Company, the number of electric vehicles in China will reach 300 million in 2040. This paper mainly conducts research in the field of wireless power transmission for static and dynamic charging of electric vehicles in China.

    Download full text (pdf)
    fulltext
  • 19.
    Liu, Jasmine Lihua
    et al.
    Lund University, Sweden; Shanghai Dianji University, China; Jönköping University, Sweden.
    Danilovic, Mike
    Lund University, Sweden; Shanghai Dianji University, China; Halmstad University, Sweden.
    Müllern, Tomas
    Jönköping University, Sweden.
    Nåbo, Arne
    Swedish National Road and Transport Research Institute, Traffic and road users, Driver and vehicle.
    Almestrand Linné, Philip
    Swedish National Road and Transport Research Institute, Society, environment and transport, Environment.
    Exploring battery swapping for heavy trucks in China 1.02021Report (Other academic)
    Abstract [en]

     To achieve successful transportation electrification, we need to understand the role of different vehicle charging solutions. This report focuses on conductive technology that involves the physical exchange of empty batteries with fully charged ones, an approach called battery swapping. The battery swapping alternative has garnered great interest in China and many other developing economies in recent years, particularly for two- and three-wheeled vehicles. This battery swapping approach is now tackling the heavy vehicle sector, such as trucks and buses. As a result, this approach to “refueling” electric vehicles is important to explore, and we need to understand the conditions needed for battery swapping to succeed. In this report we focus on the use of battery-swapping technology to develop and market Electric Heavy Trucks (EHT) in China.

    Download full text (pdf)
    fulltext
  • 20.
    Nilsson, Lena
    et al.
    Swedish National Road and Transport Research Institute.
    Nåbo, Arne
    Evaluation of application 3: Intelligent cruise control simulator experiment: Effects of different levels of automation on driver behaviour, workload and attitudes1996Report (Other academic)
    Download full text (pdf)
    FULLTEXT01
  • 21.
    Nåbo, Arne
    et al.
    Swedish National Road and Transport Research Institute, Traffic and road users, Driver and vehicle.
    Abrahamsson, Mats
    Linköping University, Sweden.
    Bhatti, Harrison John
    Swedish National Road and Transport Research Institute, Traffic and road users, Vehicle Systems and Driving Simulation..
    Björklund, Maria
    Linköping University, Sweden.
    Daniels, David
    Swedish National Road and Transport Research Institute, Society, environment and transport, Traffic analysis and logistics.
    Danilovic, Mike
    Halmstad University, Sweden.
    Haugland, Per
    Intuizio AB, Sweden.
    Huddén, Petter
    Intuizio AB, Sweden.
    Portinson Hylander, Jens
    Swedish National Road and Transport Research Institute, Society, environment and transport, Mobility, actors and planning processes.
    Käck, Svetla
    Swedish National Road and Transport Research Institute, Traffic and road users, Vehicle Systems and Driving Simulation..
    Lindahl, Per
    Logistikia, Cleantech AB, Sweden.
    Lihua Liu, Jasmine
    Scandinavian Executive Education & Research AB (SEER), Sweden.
    Sallnäs, Uni
    Linköping University, Sweden.
    Battery-Swapping for Heavy Duty Vehicles: A Feasibility Study on Up-Scaling in Sweden2024Report (Other academic)
    Abstract [en]

    The report focuses on the commercial feasibility of a battery-swapping system for heavy trucks in Sweden. By studying business models, the compatibility with Swedish regulations, and integration into transport operations, we explore how disruptive technologies, ecosystem effects, and circularity could enable a rapid introduction and diffusion of a battery-swapping system. A special focus is on China, covering the status of battery-swapping there and analysing the processes that have led to its rapid development and deployment. In China, battery-swapping creates a new business model where actors from energy production, battery manufacturing, and the mechanical industry spearhead the development and diffusion of the technology. Battery-swapping is now the dominant technology for electric trucks in China.

    Advantages of battery-swapping include: only a few minutes battery swap time, reduced investment for truck owners, low impact on the local power grid, and separation of vehicle and battery life cycles. A simulation study in this report shows that battery-swapping for heavy trucks in harbour operations could offer clear advantages compared to cable charging. However, there are several challenges to introducing battery-swapping in Sweden. First, it has no clear promoters in the industry. Swedish and European vehicle manufacturers are hesitant because it challenges their current business model, and that they may instead take the role of gatekeeper. Second, current standards and regulatory frameworks for vehicles and energy systems in Sweden and in the European Union do not include battery-swapping. The report also addresses the need for knowledge and training of people at battery-swapping stations, and the importance of social sustainability in the electrification of heavy vehicle transport operations.

    Download full text (pdf)
    fulltext
  • 22.
    Nåbo, Arne
    et al.
    Swedish National Road and Transport Research Institute, Traffic and road users, Driving Simulation and Visualization.
    Andhill, Carl Johan
    Dynagraph.
    Blissing, Björn
    Swedish National Road and Transport Research Institute, Traffic and road users, Driving Simulation and Visualization.
    Hjort, Mattias
    Swedish National Road and Transport Research Institute, Traffic and road users, Driver and vehicle.
    Källgren, Laban
    Swedish National Road and Transport Research Institute, Traffic and road users, Driving Simulation and Visualization.
    Known Roads: real roads in simulated environments for the virtual testing of new vehicle systems2016Report (Other academic)
    Abstract [en]

    This publication presents a project aiming to develop virtual representations of real roads for use in driving simulators. The development was done in order to enable assessments of new systems on existing and well known roads in a driving simulator, and will increase the external validity of virtual testing. Furthermore, the usage of the virtual model of such roads makes the simulator results better comparable to earlier performed or later following road tests. The roads connecting Göteborg-Borås-Alingsås-Göteborg were selected. The purpose for this is due to their proximity to the vehicle industry in west Sweden and to the test tracks “Hällered” and “AstaZero”. However, the tools and methods developed can be used to build a virtual representation of any other road through a surrounding landscape and/or more urban environment. The project was carried out in steps, starting with data collection (investigation and assessment of available data from different sources as well as measurement of road properties) followed by data treatment (remove irrelevant data and errors, filtering, etc.), modelling (mathematical description of road properties) and simulation (selection of data formats for real time simulation).

    Download full text (pdf)
    fulltext
  • 23.
    Nåbo, Arne
    et al.
    Swedish National Road and Transport Research Institute, Traffic and road users, Human-vehicle-transport system interaction.
    Anund, Anna
    Swedish National Road and Transport Research Institute, Traffic and road users, Human-vehicle-transport system interaction.
    Fors, Carina
    Swedish National Road and Transport Research Institute, Traffic and road users, Human-vehicle-transport system interaction.
    Karlsson, Johan G
    Autoliv Development AB.
    Förares tankar om framtida automatiserad bilkörning: en fokusgruppstudie2013Report (Other academic)
    Abstract [en]

    What is generally considered with automation in driving is the possibility for the driver to pass on driving tasks, or the complete driving, to the vehicle. But it can also be considered that the vehicle automatically will take over control in situations where the driver cannot cope. It is more or less unknown how drivers are reasoning about these future systems. Examples of questions the drivers might have about automation of driving are the reasons for introducing it and which drivers it should be made for. Focus group discussion was used as the method to reach a broad and rich description on this. Four discussions were carried out with a total of 28 participants. They were encouraged to think about the future (5-20 years) and the possibilities that automation might bring. First, the discussion focused on more general aspects of automated driving. Then, selected video clips on automation were shown and the participants discussed their reflections on these. Last, a questionnaire was used in order to catch thoughts and opinions on automated driving. Subjects in focus were mostly connected to whom the system was designed for and who could afford it. A great deal of the discussions were about different aspects on safety and security – if it would increase safe driving or not. A question raised was a concern that drivers will lose knowledge of driving and that education will be important. When it came to future vehicles it was not obvious that what you will see is the same kind of vehicles that you see today. Also, issues like responsibilities and legal matters were discussed. The focus group discussions also resulted in a long list of innovative ideas. When it came to full automation the participants were more positive to systems where the driver supervises the driving than the systems where the driver can attend to something else. In general, the participants were more positive to systems that already exist, than to the more advanced, future systems. If looking at main user needs it can be seen that some want to have automation when driving long and boring distances (e.g. for comfort reasons) while others want to have automation to help them cope with difficult driving situations (e.g. for safety reasons). Both these needs are probably necessary to fulfill in the future.

    Download full text (pdf)
    FULLTEXT01
  • 24.
    Nåbo, Arne
    et al.
    Swedish National Road and Transport Research Institute, Traffic and road users, Human-vehicle-transport system interaction.
    Börjesson, Conny
    Viktoria Swedish ICT).
    Eriksson, Gabriella
    Swedish National Road and Transport Research Institute, Traffic and road users, Human-vehicle-transport system interaction.
    Genell, Anders
    Swedish National Road and Transport Research Institute, Society, environment and transport, Environment.
    Hjälmdahl, Magnus
    Swedish National Road and Transport Research Institute, Traffic and road users, Human-vehicle-transport system interaction.
    Holmén, Lotta
    Viktoria Swedish ICT).
    Mårdh, Selina
    Swedish National Road and Transport Research Institute, Traffic and road users, Human-vehicle-transport system interaction.
    Thorslund, Birgitta
    Swedish National Road and Transport Research Institute, Traffic and road users, Human-vehicle-transport system interaction.
    Elvägar i körsimulator: design, test, utvärdering och demonstration av elvägstekniker och elfordon med virtuella metoder2015Report (Other academic)
    Abstract [en]

    Electric road systems, ERS, where vehicles receive electricity continuously while driving, could be a way to reach the target of a fossil-free transport sector. A demonstration environment in a driving simulator was developed in order to test and evaluate ERS concepts and electric vehicles driving on ERS. A user study was conducted, where 25 drivers drove a 40 kilometre long route, both with a hybrid truck on ERS and with a conventional truck with no ERS. Driving on ERS showed no remarkable difference on driver’s experience of safety and aestethics or the driving behaviour compared to no ERS. The exception was average speed which was 2 kilometres/hour higher when driving on ERS. The energy consumption decreased 35 per cent on ERS. In order to disseminate project results to actors and potential users of ERS, a large number of simulator demonstrations have been conducted. There has also been a press release and a number of magazine articles. In addition, a portable ERS driving simulator was constructed and used in order to reach a broader public.

    Download full text (pdf)
    fulltext
  • 25.
    Nåbo, Arne
    et al.
    Swedish National Road and Transport Research Institute, Traffic and road users, Driving Simulation and Visualization.
    Börjesson, Conny
    Rise Viktoria AB.
    Källgren, Laban
    Swedish National Road and Transport Research Institute, Traffic and road users, Driving Simulation and Visualization.
    Nyman, Joakim
    Rise Viktoria AB.
    Stave, Christina
    Swedish National Road and Transport Research Institute, Traffic and road users, Driver and vehicle.
    Laddsträcka i Lund: En studie av busslinje i körsimulator2018Report (Other academic)
    Abstract [en]

    By the year 2018, the Climate Act will come into force. By 2030, climate impact in the transport sector should have fallen by 70 percent compared with 2010 and by 2045 Sweden’s climate impact will be net zero. This means a fundamental transformation of the energy supply of vehicles in road transport. For buses in city traffic, electrification is favorable because electric buses are both exhaustfree and quiet, giving a lesser environmental impact in the street environment, and by that the possibility of creating attractive bus lines.

    To exemplify how a bus electrification can be done, a driving simulator study was conducted on a possible electric bus line in the city of Lund using an electric road system. The goal of electrification was to achieve a high user acceptance and to meet the targets for the future environment and energy use.

    With the help of various sources of information about electric buses, electric road systems and the urban environment of Lund, virtual models were created, which were then installed in the driving simulator.

    To evaluate whether the bus and electrification complied with the user acceptance requirements, bus drivers participated in a test in a dynamic driving simulator, SIM II at VTI in Linköping. The results showed that the drivers had no major difficulties in driving the bus so that the electrification worked. Unfortunately, some of the drivers suffered from sickness while driving (“simulator sickness”) and had to stop driving.

    An evaluation of the driving simulator used as a tool for public relation purposes was made by providing an information sheet and demonstrating the electrification to employees in Lund municipality by using a small, moveable driving simulator. Interviews about electric buses and electrification were made before and after the demonstration to see effects on the opinion and understanding of electric buses and electric road systems. The results showed that the simulator drive gave added value in addition to the information sheet only, 2/3 of the participants answered that their understanding was increased by the simulator drive and 1/3 answered that it was not changed. The attitude to the electric bus and the electric road system did not change. Most people considered that the simulator could be a helpful tool in decision making.

    An analysis of the energy consumption of the bus showed that the battery level was lower at the end of the test drive than in the beginning, i.e. the battery level dropped. This would not have been the case if the electrification had been made more advantageously, and thus would not need to be a limiting factor in future implementation.

    In addition, the studied electric road system was compared with some other power supply options such as charging at bus depot and at bus end stop. The pros and cons of these alternatives were discussed based on economic and bus operational perspectives.

    Download full text (pdf)
    fulltext
  • 26.
    Nåbo, Arne
    et al.
    Swedish National Road and Transport Research Institute, Traffic and road users, Driver and vehicle.
    Nilsson, Lena
    Swedish National Road and Transport Research Institute, Traffic and road users.
    Körsimulering och visualisering i framtidsforskningens tjänst2016Report (Other academic)
    Abstract [sv]

    Körsimulering och visualisering i framtidsforskningens tjänst är ett projekt med syftet att utreda en vidareutveckling av körsimulatorns användningsområde till att omfatta även framtidsforskning. Forskning om framtiden har fått en ökad betydelse i samhället mot bakgrund av de globala mål som formulerats avseende miljö och säkerhet. Detta har medfört ett ökat intresse för att kunna genomföra prov och demonstrationer av framtidsscenarier för vägtransportsystem (vägar, fordon, IT-system, m.m.). I korthet är syftet med det genomförda arbetet att kartlägga de kompetenser och resurser som behövs för att bedriva framtidsforskning med körsimulatorn som verktyg, samt möjligheter till samverkan mellan organisationer och kompetenscentra inom simulering och visualisering.

    Download full text (pdf)
    fulltext
  • 27.
    Nåbo, Arne
    et al.
    Swedish National Road and Transport Research Institute, Traffic and road users, Driver and vehicle.
    Nordin, Lina
    Swedish National Road and Transport Research Institute, Infrastructure, Infrastructure maintenance.
    Andersson, Jeanette
    Swedish National Road and Transport Research Institute, Society, environment and transport, Environment.
    Berglund, Magnus
    Swedish National Road and Transport Research Institute, Society, environment and transport, Traffic analysis and logistics.
    Bhatti, Harrison John
    Swedish National Road and Transport Research Institute, Traffic and road users, Vehicle Systems and Driving Simulation..
    Brunner, Sabrina
    Swedish National Road and Transport Research Institute, Society, environment and transport, Traffic analysis and logistics.
    Chakarova Käck, Svetla
    Swedish National Road and Transport Research Institute, Traffic and road users, Vehicle Systems and Driving Simulation..
    Daniels, David
    Swedish National Road and Transport Research Institute, Society, environment and transport, Traffic analysis and logistics.
    Danilovic, Mike
    Högskolan i Halmstad.
    Flötteröd, Gunnar
    Swedish National Road and Transport Research Institute, Society, environment and transport, Traffic analysis and logistics.
    Fu, Jiali
    Swedish National Road and Transport Research Institute, Traffic and road users, Driver and vehicle.
    Gavriljeva, Olga
    Lunds universitet.
    Grenander, Gabriella
    Swedish National Road and Transport Research Institute, Society, environment and transport, Traffic analysis and logistics.
    Huddén, Petter
    Intuizio.
    Liu, Chengxi
    Swedish National Road and Transport Research Institute, Society, environment and transport, Traffic analysis and logistics.
    Stelling, Petra
    Swedish National Road and Transport Research Institute, Society, environment and transport, Traffic analysis and logistics.
    Wehner, Jessica
    Swedish National Road and Transport Research Institute, Society, environment and transport, Traffic analysis and logistics.
    Regeringsuppdrag om elektrifieringen av transporter: rekommendationer för att underlätta datadelning och nyttiggörande av data för planering, utveckling och drift av laddinfrastruktur och affärsmodeller2023Report (Other academic)
    Abstract [en]

    The government has commissioned the Swedish National Road and Transport Research Institute (VTI) to “contribute to the building of knowledge around a fast, smart and economically efficient electrification of the transport sector”. This report focusses on the part of the mission that deals with conducting pilot projects and developing models for how data, in practice, can be made available, shared and utilized in the best way to optimize planning, development, operation for charging infrastructure and business models. 

    The report provides a description of existing technologies for charging electric vehicles, important user perspectives, and how business models and systems for charging infrastructure can be modelled. 

    The report focuses on data sharing and describes how actors today share data and what difficulties they see with data sharing. This includes, among other things, data availability, sharing and utilization, as well as how the actors want it to work going forward. A major challenge concerns data availability, where actors partly see problems with getting access to data and partly are hesitant to want to share their own data. Often, it is about privacy issues and regulation according to the GDPR. 

    The importance of a well-functioning collaboration between the energy and transport sectors has been highlighted in previous reports from this assignment. 

    The importance of digitalization and digital infrastructure that connects these sectors is particularly emphasized in this work. Digitalization is needed to streamline planning, development and operation of the infrastructure that an electrified transport system requires. The modeling done in this part of the assignment deals with transport modeling and energy modeling as well as development to make the models interact.

    Download full text (pdf)
    fulltext
1 - 27 of 27
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf