Publications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Asplund, Disa
    et al.
    Swedish National Road and Transport Research Institute, Society, environment and transport, Transport economics.
    Westin, Jonas
    CERUM, Umeå universitet.
    Modellering av slingor inom sjötransporter2017Report (Other academic)
    Abstract [en]

    The Swedish national freight transport model system Samgods is a freight model that simulates logistics decision at a disaggregated firm-to-firm level. The model calculates total annual transport demand in Sweden for all transport modes based on a deterministic cost minimization approach. The model cannot consolidate commodities of different commodity types in the same vessel, train or truck and can only simulate vessels using direct routes between two ports. This implies that many of the features of sea transport such as utilizing larger vessels and building loops to consolidate goods from different ports is not possible in the current Samgods version. In this paper, we analyze the effect of removing restrictions in sea transportation especially by allowing the ship operators to construct and utilize loops. In the new model, LIFREM (Loops Including FREight Model), the shippers’ choice of sea transport routes is modelled as a mixed integer linear programming optimization problem. In doing so, we make use of a case study on sea transport of forest products from Northern Sweden to Western Europe. The results show that allowing predefined loops decreases total logistic cost by 10% and allowing the shipper to freely select loops decreases the cost by 21%. These results show that modelling of loops is important in order to realistically represent the attractiveness of the sea transport mode. This is also confirmed by the fact that the sea mode share increases by 2–4% in LIFREM when loops are allowed.

  • 2.
    Vierth, Inge
    et al.
    Swedish National Road and Transport Research Institute, Society, environment and transport, Transport economics.
    Karlsson, Rune
    Swedish National Road and Transport Research Institute, Society, environment and transport, Traffic analysis and logistics.
    Westin, Jonas
    CERUM, Umeå universitet.
    Validering av sjötransporter i Samgodsmodellen: version 1.12016Report (Other academic)
    Abstract [en]

    The project analyzes how well sea transports are modelled in the Swedish national freight model system Samgods. This first report comprises a short description of Version 1.1 of the model including calibration, a comparison of model results and statistics in 2012 as well as sensitivity analyses to test how the model reacts to different types of interventions. The second report, VTI notat 31-2016 Modeling of loops in maritime transport Case Study of SCA's RoRo operations in the Baltic Sea, examines how big the problem is that Samgods does not model loops (vessels calling more than two ports during a trip).

    The existing Samgods model is a deterministic cost-minimizing model. It consists of several partially interacting modules: a) base matrices that describe the demand for 32 commodities, b) the logistics model that contains submodules for the choice of consignment size, consolidation of shipments from different senders, choice of transport chains, treatment of empty transports etc. and c) the rail capacity management tools (RCM) addressing capacity constraints in the Swedish rail network.

    The calibration of the model focuses on tonne-km and modal split in Sweden as well as different regional distributions of the tonnes transported, but the distribution over vessels types is not taken into account. Our analyses show that the model calculates about four times as many tonnes transported by container vessels than the statistics. We see a need to check if the input data used for the modelling of container transports (vs conventional transports) is realistic.

    Throughput (loaded/unloaded tonnes goods) was calibrated for 14 coastal sections and twelve aggregated commodities. However, we believe that the throughput per port should be a calibration target. The distribution of the gods on the ports is crucial in analyses of investments in fairways, locks etc.

    Furthermore, the distribution of the port calls vessel categories and -size classes was not a calibration target. We show that Samgods model overestimates the number of calls to all freight vessels with about 50 percent. The number of container vessel calls is about five times higher as in the Swedish Maritime Administration’s database. The number of roro-vessel calls is about two times as high. The conformity for the other vessels is very good.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf