Publications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Dinegdae, Yared
    et al.
    Swedish National Road and Transport Research Institute, Infrastructure, Pavement Technology.
    Onifade, Ibrahim
    Texas A and M University.
    Birgisson, Björn
    Texas A and M University.
    Reliability-based specification for asphalt concrete pavements2019In: Journal of Testing and Evaluation, ISSN 0090-3973, E-ISSN 1945-7553, Vol. 48, no 1Article in journal (Refereed)
    Abstract [en]

    The use of volumetric-based specifications that utilize air void and asphalt content for the quality control of asphalt pavements is a major concern as there is a lack of fundamental correlation between these mixture properties and long-term pavement performance. In addition to that, the input variabilities' influence on target reliability and pavement performance is not addressed in these volumetric-based specifications. The aim of this article is to introduce a reliability-based specification for the quality control of top-down cracking in asphalt concrete pavements. The reliability-based specification criteria are developed for two traffic level categories and using design inputs such as hourly equivalent single axle load traffic, asphalt layer thickness, base modulus, and dissipated creep strain energy limit. For the development of the reliability-based specification, several field pavement sections with well-documented performance history and high-quality laboratory and field data were analyzed using the mechanics-based design framework for variability conditions that are representative of actual field conditions. Variation in dissipated creep strain energy limit and asphalt concreter layer thickness has been observed to influence target reliability and overall pavement performance significantly, in comparison with base modulus and hourly equivalent single axle load traffic. The proposed reliability-based specification can complement existing performance-based specifications for the quality control of top-down cracking in asphalt concrete pavements.

  • 2.
    Lindelöf, Peter
    et al.
    Lunds Universitet.
    Said, Safwat F.
    Swedish National Road and Transport Research Institute, Infrastructure, Pavement Technology.
    Ahmed, Abubeker W
    Swedish National Road and Transport Research Institute, Infrastructure, Pavement Technology.
    Poisson’s Ratio of Asphalt Concrete Mixes Using Indirect Tensile Test2019In: Journal of Testing and Evaluation, ISSN 0090-3973, E-ISSN 1945-7553, Vol. 47, no 1Article in journal (Refereed)
    Abstract [en]

    Increased interest in mechanistic evaluation of flexible pavement structures has brought a demand for accurate and practical methods, models, or both to estimate the mechanical properties of asphalt concrete mixtures. One of these properties is the Poisson’s ratio (ν) of asphalt concrete mixtures, which is often assumed to have a constant value of 0.35 in asphalt concrete evaluations. However, investigations have reported that mixture type, air void content, and temperature produce considerable variation in measured ν-values that could have a significant effect on evaluations of asphalt concrete mixes. The objective of this study was to evaluate the effect of air voids, binder type, and testing conditions on the measured ν-values. Indirect tensile (IDT) tests were conducted to measure ν-values. The study indicated that the Poisson’s ratio of the asphalt concrete mixes, on average, attained a maximum value at a particular level of air void content. Furthermore, when comparing the Poisson’s ratio values in relation to the dynamic modulus, calculated using the Mechanistic Empirical Pavement Design Guide (MEPDG) equation, higher ν-values were attained. This demonstrates the importance of measuring the Poisson’s ratio of a mix type.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf