Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Some approaches to car demand modelling
Swedish National Road and Transport Research Institute.
1983 (English)Report (Other academic)
Place, publisher, year, edition, pages
Linköping: Statens Väg- och Trafikinstitut. VTI Rapport nr 251A , 1983.
Series
VTI rapport, ISSN 0347-6030
Keywords [en]
English, Car ownership, Mathematical model, Forecast, Mileage, Modal split, Demand (econ), Sweden, SVT
Research subject
Road: Transport, society, policy and planning, Road: Personal transport
Identifiers
URN: urn:nbn:se:vti:diva-5670OAI: oai:DiVA.org:vti-5670DiVA, id: diva2:674534
Available from: 2013-12-03 Created: 2013-12-03 Last updated: 2013-12-03

Open Access in DiVA

fulltext(36835 kB)4 downloads
File information
File name FULLTEXT01.pdfFile size 36835 kBChecksum SHA-512
4a5592b6a216c48a22901e7fd0534b73190876194e83d9690fe7eb2e67c1db3c53792941e3b624f70fdb0b719f073588278d16d2a281ff8a8a897e5ae5bc629e
Type fulltextMimetype application/pdf

Authority records BETA

Jansson, JO

Search in DiVA

By author/editor
Jansson, JO
By organisation
Swedish National Road and Transport Research Institute

Search outside of DiVA

GoogleGoogle Scholar
Total: 4 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 11 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf