Open this publication in new window or tab >>2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
The introduction of automated driving systems (ADSs) in road transportation systems will affect the traffic flow characteristics, and have ripple effects which will lead to larger societal implications. The traffic flow is characterized by speed, density, and vehicular throughput, which determine the road capacity and the traffic performance in terms of, among others, travel times and delays. A tool used to study traffic flow dynamics and analyze traffic performance is microscopic traffic simulation, which works by describing the interactions between road users to simulate observed traffic phenomena.
To use microscopic traffic simulation to evaluate the impact of ADSs on traffic performance, driving models need to be able to simulate driving decisions and behavioral patterns of ADSs. Driving models have been proposed specifically for ADSs, however, it remains to be validated whether these driving models when used in combination with traditional human driving models adequately simulate mixed traffic that includes human drivers and ADSs. Ideally, a clear interpretation of the behavioral assumptions for each type of vehicle should be possible, as these determine the simulation results. However, it is challenging to compare behavioral assumptions when using different driving models to describe different vehicle types. Empirical research has validated that some driving models, such as the intelligent driver car-following model (IDM), are well-suited for describing both human or automated driving when calibrated with the proper data.
The aim of this thesis is two fold: to further develop microscopic traffic simulation for the study of mixed traffic, and to evaluate the effects of mixed traffic on motorway traffic performance. To enhance the modeling of mixed traffic, a model for perception is proposed which allows the explicit inclusion of perception errors in driving decisions. Its use, in combination with driving models capable of describing both human and automated driving, enables to make distinctions between human drivers and ADSs both in perception capabilities and in driving behavior. This modeling approach focuses on describing essential differences to simulate mixed traffic and removes risks involved in using different driving models.
Abstract [sv]
Introduktionen av självkörande fordon förväntas förändra våra transportsystem. Självkörande fordon förväntas förändra trafikflöden, påverka resmönster, påverka människors val av färdmedel och förändra beslutet att äga en bil. Dessa förändringar kan leda till större samhälleliga förändringar.
För att förstå hur självkörande fordon kan tänkas påverka trafiken är det viktigt att studera hur andelen självkörande fordon och deras beteende påverkar trafikflödesdynamiken. Faktorer som hastighet och antal fordon på vägen påverkar restider, sannolikheten för trafikstockningar och vägarnas kapacitet att hantera trafikvolymer.
En metod för att studera trafik är simulering. Genom simuleringar modelleras hur fordon och förare beter sig och samspelar med varandra och infrastrukturen, vilket möjliggör analys av verkliga trafikscenarier. Att simulera samspelet mellan självkörande och mänskligt körda fordon är dock en komplex utmaning. Självkörande och mänskligt körda fordon kommer att dela vägarna, och simuleringarna måste ta hänsyn till skillnaderna i beteende mellan dem.
Den forskning som presenteras här tar sig an utmaningen att modellera mänskligt körda fordon och självkörande fordon i trafiksimuleringar. För att åstadkomma detta måste skillnader i perception och beslutsfattande mellan mänskligt körda och självkörande fordon beaktas. Genom att dessa skillnader inkluderas visar jag att simuleringarna blir mer precisa och därmed möjliggör undersökning av effekter på vägkapacitet, förseningar och restider.
Utöver att förbättra forskares, väghållares och beslutsfattares förståelse för trafik som består av både mänskligt körda och självkörande fordon och deras prestanda, kan simuleringar också bidra till att undersöka frågor som hur självkörande fordon kan påverka trafiksäkerhet eller energiförbrukning. I takt med att teknik för självkörande fordon utvecklas kan simuleringsverktyg hjälpa till att skapa säkra, effektiva, hållbara och tillförlitliga transportsystem.
Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2025. p. 73
Series
Linköping studies in science and technology. Dissertations, ISSN 0345-7524 ; 2434
National Category
Transport Systems and Logistics
Identifiers
urn:nbn:se:vti:diva-21762 (URN)10.3384/9789181180046 (DOI)9789181180039 (ISBN)9789181180046 (ISBN)
Public defence
2025-03-26, K3, Kåkenhus, Campus Norrköping, 09:15 (English)
Opponent
Supervisors
2025-03-062025-03-062025-03-06Bibliographically approved