Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Inhalation toxicity profiles of particulate matter: a comparison between brake wear with other sources of emission
National Institute for Public Health and the Environment (RIVM).
National Institute for Public Health and the Environment (RIVM).
IDIADA Fahrzeugtechnik.
Eindhoven University of Technology.
Show others and affiliations
2019 (English)In: Inhalation Toxicology, ISSN 0895-8378, E-ISSN 1091-7691Article in journal (Refereed) Published
Abstract [en]

Objective: There is substantial evidence that exposure to airborne particulate matter (PM) from road traffic is associated with adverse health outcomes. Although it is often assumed to be caused by vehicle exhaust emissions such as soot, other components may also contribute to detrimental effects. The toxicity of fine PM (PM2.5; <2.5 µm mass median aerodynamic diameter) released from brake pads was compared to PM from other sources.

Materials and methods: PM2.5 of different types of brake pads (low-metallic, semi-metallic, NAO and ECE-NAO hybrid), tires and road pavement, poultry as well as the combustion of diesel fuel and wood (modern and old-fashioned stove technologies) were collected as suspensions in water. These were subsequently aerosolized for inhalation exposures. Female BALB/cOlaHsd mice were exposed for 1.5, 3, or 6 hours by nose-only inhalation up to 9 mg/m 3 .

Results: Neither cytotoxicity nor oxidative stress was observed after exposure to any of the re-aerosolized PM2.5 samples. Though, at similar PM mass concentrations the potency to induce inflammatory responses was strongly dependent on the emission source. Exposure to most examined PM2.5 sources provoked inflammation including those derived from the poultry farm, wear emissions of the NAO and ECE-NAO hybrid brake pads as well as diesel and wood combustion, as indicated by neutrophil chemoattractant, KC and MIP-2 and lung neutrophil influx.

Discussion and conclusions: Our study revealed considerable variability in the toxic potency of brake wear particles. Understanding of sources that are most harmful to health can provide valuable information for risk management strategies and could help decision-makers to develop more targeted air pollution regulation.

Place, publisher, year, edition, pages
Taylor and Francis Ltd , 2019.
National Category
Occupational Health and Environmental Health
Identifiers
URN: urn:nbn:se:vti:diva-13889DOI: 10.1080/08958378.2019.1606365Scopus ID: 2-s2.0-85065545050OAI: oai:DiVA.org:vti-13889DiVA, id: diva2:1320772
Available from: 2019-06-05 Created: 2019-06-05 Last updated: 2019-06-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Gustafsson, Mats

Search in DiVA

By author/editor
Gustafsson, Mats
By organisation
Environment
In the same journal
Inhalation Toxicology
Occupational Health and Environmental Health

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf