Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Avoidable collision controls under a connected and autonomous vehicles environment
University of Seoul.
University of Seoul.
University of Seoul.
2018 (English)Conference paper, Oral presentation with published abstract (Refereed)
Abstract [en]

 Because all travelers want an efficient and comfortable trip, many engineers and researchers related to automotive technologies have improved their technologies. Two important technologies, connected vehicle environment (CV environment) and autonomous vehicles(AV), are considered to satisfy two properties, which are called ADAS (Advanced Driver assistance system). CV communicates with other vehicles, vehicle management, and connection to other advanced technologies under radio communication environment and shows driver various information of road condition, accident warning, traffic congestion prediction, and nearby vehicle’s kinematic information. While, sensors of AV recognizes nearby information through innate various sensors, called sensor fusion and judge the next path.

However, these two technologies have their own weakness. CV shows too much information so drivers can’t embrace all information and have many difficulties of judging the driver’s behavior properly. Range of AV’s sensor is nearly the same as the range of vision so AV can’t perceive macroscopic traffic flows. To compensate the defect, automotive technologies tend to be the integrated technologies of connected environment and autonomous vehicles, called connected and autonomous vehicles(CAVs)

CAVs judge and drive themselves by using the vehicle and road information through the CAV environment and/or vehicle sensors. Among CAV technologies, this paper concentrate on two main technologies: Adaptive cruise control(ACC) and cooperative adaptive cruise control (CACC), which is related to collision controls. ACC and CACC keep the time headway between an ego vehicle and a following vehicle. Therefore, the complexity and diversity of the information obtained by CAVs have resulted in the combination of many sensitive components.

The combination of many sensitive components, which is related to reliability of technologies, causes CAVs malfunction. Malfunction of CAVs can normally affect vast harm of travelers so various safety standards are adopted to check the safety and minimize the malfunction. Many skeptics of CAVs raise a question about the reliability of CAVs. Therefore, CAV has to adopt its own safety standards. Automotive safety integrity level(ASIL) is a risk evaluation standard for only autonomous vehicles defined by the ISO 26262 – functional safety for road vehicles standard. ASIL is the combination of severity, exposure and controllability. This is a new adaptation of the safety integrity level (IEC 61508) for the automotive industry. ASIL is classified from A (Lowest safety) to D (Highest safety). ASIL D refers to the highest classification of initial hazard and to that standard’s most stringent level of safety measures to apply for avoiding an unreasonable residual risk.

This paper proposes theoretical methods to suggest proper time headway range by velocity to prevent collision controls. This paper formulates time-invariant headway and evaluates the proper headway range of CAV technologies using string stability theory. We simulate three available cases (No ADAS, ACC, and CACC cases) to investigate effects of the malfunction of CAV’s two main technologies (ACC and CACC). The contribution of this paper is to simulate proper headway range and time-invariant failure probability under CAV environment

Place, publisher, year, edition, pages
Linköping: Statens väg- och transportforskningsinstitut, 2018.
Research subject
X RSXC
Identifiers
URN: urn:nbn:se:vti:diva-12963OAI: oai:DiVA.org:vti-12963DiVA, id: diva2:1204917
Conference
18th International Conference Road Safety on Five Continents (RS5C 2018), Jeju Island, South Korea, May 16-18, 2018
Available from: 2018-05-16 Created: 2018-05-09 Last updated: 2018-06-19Bibliographically approved

Open Access in DiVA

fulltext(238 kB)35 downloads
File information
File name FULLTEXT01.pdfFile size 238 kBChecksum SHA-512
9d03f527e1fc2f196d4ca39b68a9657ff91f169d14a8ce6c48e6c28b92b1fd15aa1cfd0ed0d98f7f54a01b7772acb4be1b5784d78ebfed0da3e29c01ab49aa2e
Type fulltextMimetype application/pdf

Search outside of DiVA

GoogleGoogle Scholar
Total: 35 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 99 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf