Publications
12345673 of 14
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Road Surface and Tyre Interaction: Functional Properties affecting Road Dust Load Dynamics and Storage
Swedish National Road and Transport Research Institute, Society, environment and transport, Environment. KTH.ORCID iD: 0000-0002-0138-0768
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [sv]

Luftburna partiklar (PM) är ett problem för människans hälsa, där flertalet samband mellan negativa hälsoeffekter finns mellan luftföroreningar finns, bland annat för respiratoriska sjukdomar, lungcancer och kardiovaskulära sjukdomar med flera. I länder där dubbdäck används, till exempel Sverige, Finland och Norge, och sandning av vägar och gator genomförs vintertid för att säkerställa god friktion kommer en betydande andel av partiklarna från vägslitage och nedkrossning av sand vilket bidrar till PM10. Mängden som icke-avgaspartiklar bidrar med till PM10 varierar med lägst nivåer på landsbygd och högst nivåer i vägnära miljöer.

Avhandlingen har flertalet mål, där ett bredare mål är att undersöka det komplexa väg-ytadäcksystemet gällande vägslitage och dess inverkan på genererandet av slitagepartiklar och vägdamm, inklusive transporten och lagringen av vägdamm på vägytan. Avhandlingen syftar även att sätta in dessa aspekter i relation till andra lika komplexa funktionella parametrar som kommer av eller påverkas av vägyta-däckinteraktionen såsom bullergenerering, rullmotstånd och fiktion. Detta görs genom några mer specifika mål och begränsningar som beskrivs i avhandlingen. Avhandlingen har även det fundamentala syftet att agera som en start för att nå ett holistiskt helhetsgrepp för att förstå den funktionella prestandan som krävs för väg-ytadäckinteraktionen, vilket har genomförts i samarbete med Vieira och det som han publicerar i sin avhandling.

Vägyta-däckinteraktionen utgörs av ett komplex kontaktsystem, som påverkas av både däckegenskaper och vägens egenskaper, dels ingående material och vägytans karaktär, samt omkringgivande miljö och eventuella mellanlager av till exempel vatten, slask, snö, is eller sand och grus med mera.

Slitlagret, eller vägbeläggningen, har flera funktioner som beror på de ingående materialens egenskaper. Beläggningen måste motstå flertalet olika nedbrytningsprocesser, inklusive stensläpp, olika typer av deformation, olika typer av sprickor och slitage från dubbdäck bland annat.

Beläggningens konstruktion och trafikens sammansättning och egenskaper påverkar även partikelgenereringen, där beläggningsegenskaperna som styr nötningsmotståndet mot dubbdäckslitage även påverkar genereringen av slitagepartiklar.

Andra aspekter som påverkas av vägyta-däckinteraktionen är genereringen av buller och fordonets rullmotstånd. Buller har likt partiklar negativa hälsoeffekter och vägyta-däckinteraktionen är den dominerande källan till trafikbuller från ungefär 15 - 25 km/h för lätta fordon och från ungefär 30 - 35 km/h för tunga fordon. Flertalet mekanismer ger upphov eller förstärker bullret, och flera är kopplade till ytans beskaffenhet såsom makrotexturen. Rullmotstånd är omvandlingen av mekanisk energi till värme för ett rullande däck och påverkas av både däckets och vägytans deflektion och deformation, och påverkas även av vägytans beskaffenhet av t.ex. ojämnheter och makrotexturen. Rullmotståndet ör kopplat till bränsleförbrukningen och därigenom till avgasemissioner. En annan funktionell egenskap för vägytan är friktionen som påverkas av vägytans beskaffenhet av både mikro- och makrotexturen.

Det finns flertalet åtgärder för att minska vägdamm och PM10. Åtgärderna kan vara preventiva eller avhjälpande. I avhandlingen beskrivs åtgärder riktade mot att förändra trafiksituationen och däckanvändningen, byte av vägbeläggning, städning av vägytan och dammbindning.

Flertalet metoder har använts i studierna som diskuteras i avhandlingen och består av en storskalig vägsimulator, användandet av lasermätsystem för bestämning av vägslitage respektive textur, dels en prediktionsmodell för dubbdäcksslitage och den nordiska NORTRIP-modellen för modellering av icke-avgasemissioner från vägtrafik. Även ett kommersiellt trafiksystem har nyttjats samt en metod för att bestämma dubbdäcksandelen av trafiken. Vägdamm har samlats in och kvantifierats genom användandet av WDS (Wet Dust Sampler) metoden och det insamlade dammet har beskrivits och karakteriserats med hjälp av en laboratoriemetod och med hjälp av lasergranulometri. Turbiditet har även använts som en approximation av vägdammsförrådet.

Fem artiklar finns bifogade till avhandlingen. Den första handlar i korthet om en kalibrering av den svenska prediktionsmodellen för dubbdäckslitage av vägar och dess effekt på NORTRIP-modellen, där slitagemodellen är implementerad. Den andra artikeln handlar om olika vägbeläggningars makrotextur och hur olika mått kan användas för att beskriva den potentiella lagringsförmågan. Den tredje artikeln undersöker WDS-metoden, dels beträffandes dess prestanda gällande vatten samt dels hur detta teoretiskt påverkar eventuella dammförluster. Den fjärde artikeln handlar om den rumsvariationen och tidsvariationen av vägdamm för sex vinter- och vårsäsonger i Stockholm för flera gator med ABS (AsfaltsBetong, Stenrik)-beläggningar. Den femte artikeln genomförde en liknande undersökning under en vinter- och vårsäsong i Linköping för en dubbeldränerande beläggning och för en ABS-beläggning som agerade referens. Resultaten jämfördes med resultaten i Stockholm när det var möjligt.

Resultaten visar att slitagemodelleringen överskattade slitaget med ungefär 50%, vilket ledde till att NORTRIP-modellen överskattar bidraget från dubbdäckslitage till partikelemissionerna, vilket inte var förvånande. Dock är det inte troligt att NORTRIP-modellen får motsvarande minskning då vägyta-däckinteraktionen är komplex och flertalet aspekter påverkar slitaget och den efterföljande genereringen och lagringen av vägdamm, såsom polering av vägytan, ökat slitage vid våt vägbana med mera.

Resultaten från undersökningen med WDS-metoden visar att metoden verkar fungera väl, givet begränsningarna som fanns i studien. Den största vattenförlusten verkar vara det vatten som lämnas kvar på ytan. Det verkar även som att det mesta av dammet samlas upp. Diskussionen tar även upp hur WDS-metoden använder sig av vatten och vilka för- och nackdelar detta har jämfört med en torr metod.

Resultaten från undersökningarna om rumsvariationen och tidsvariationen av vägdammsförrådet i Stockholm visade att det fanns skillnader mellan olika säsonger, och att det fanns en skillnad mellan dammängderna i hjulspåren och mellan hjulspåren. I vissa fall syntes även skillnader mellan de undersökta gatorna med stora variationer, vilket kunde förväntas då dammförrådet beror på trafiksammansättningen, mängden fordon, vägdriften, deposition av material på ytan och meteorologin. Ett annat resultat var att en ökande makrotextur verkade resultera i ett högre dammförråd. Generellt var makrotexturen lägre mellan hjulspåren och högre i hjulspåren, vilket ej var förvånande på grund av trafikens inverkan på texturutvecklingen. Detta var dock enbart uppmätt vid ett tillfälle. Omläggningen av en ABS-beläggning till en mer slittålig ABS-beläggning genomfördes, med ett högre dammförråd som följt jämfört med före omläggningen, samtidigt som okulärbesiktning av vägytan antydde att makrotexturen ökat. Dock kan detta ha påverkats av ett högre slitage vilket inträffar under en beläggnings första vintersäsong på grund av ett extra initialslitage. Resultaten i Linköping visade liknande tids- och rumsvariation som i Stockholm för den undersökta ABS-beläggningen. Vidare diskuterades även hur den dränerande beläggningens konstruktion inverkar på partiklarnas transportprocesser. I jämförelsen föreslogs även att dammbindningen och städningen i Stockholm påverkar dammförrådet, då dessa åtgärder saknas i Linköping, vilket möjligtvis reflekteras i vägdammsförrådet i och mellan hjulspåren.

En diskussion förs kring hur olika texturmått kan användas för att karakterisera vägytans textur och hur detta kopplar till dammförrådet, samt vad som kan vara lämpligt att initialt använda, även om det påpekas att måttet som bör användas inte nödvändigtvis är upptäckt än.

Diskussionen tar även upp avsaknaden av ett holistiskt helhetsgrepp gällande vägyta-däckinteraktionen som tar samtidig hänsyn till effekter såsom slitagepartiklar, buller och rullmotstånd. Det verkar finnas några åtgärder som kan vara av intresse för att förbättra minst två aspekter samtidigt, till exempel användandet av en dubbeldränerande beläggning eller texturoptimering. En diskussion förs mellan för och nackdelar gällande de olika mekanismerna som påverkar de olika effekterna, samt hur vissa mekanismer bör undersökas närmare utifrån andra perspektiv, till exempel bullermekanismer som kan vara intressanta ur partikelsynpunkt.

Avhandlingen ger slutligen flera förslag till fortsatta undersökningar för att öka kunskapen. Detta gäller dels vägslitagemodellering och vägdammsmodellering där även vägytans textur bör beaktas. Vidare bör även mekanismer från andra effekter från vägyta-däckinteraktionen, till exempel de som påverkar buller, även undersökas och användas för att förklara mekanismer relaterade till vägdammsgenerering och uppvirvling. Det föreslås även flertalet gemensamma undersökningar som simultant undersöker flera aspekter, såsom till exempel buller, rullmotstånd, vägytans egenskaper, vägslitage, slitagepartiklar, vägdammsförrådet, uppvirvlingen av partiklar och friktion, vilket krävs för att slutligen åstadkomma det holistiska helhetsgreppet som krävs för att minst minimera intressekonflikter mellan olika funktionsegenskaper för vägbeläggningar.

Abstract [en]

Particulate matter is a problem for human health, where several relationships between negative health effects and air pollution has been found, including, but not limited to, respiratory diseases, lung cancer and cardiovascular diseases. In countries where studded tyres are used, for example Sweden, Norway and Finland, and where traction sanding is used, particles from abrasion wear of pavements and crushing of traction sand contribute significantly to PM10.

The thesis has several objectives, where a broader aim is to investigate the complex road surface and tyre system regarding abrasion wear of pavements and the impact on abrasion wear particles and road dust. The thesis also aims to put these aspects in relation to other, equally complex, aspects coming from or affected by the road surface and tyre interaction which include noise, rolling resistance and friction. This is done through some more specific objectives and limitations described in the thesis. The thesis also has the fundamental aim to act as a starting point to reach a more holistic approach to understand the functional performance of the road surface and tyre interaction which has been done in cooperation with Vieira and the results he publishes in his thesis.

The road surface and tyre interaction consist of a complex contact system which is affected by both tyre properties and the road surface course properties, including both its inherent material properties and the road surface characteristics, as well as the surrounding environment and any interface consisting of for example water, slush, snow, ice or sand and so on.

The surface wear course has several functions which is dependent on the inherent material properties. The wear course must resist several degradation processes, including chipping, different types of deformation, different types of cracking as well as abrasion wear due to studded tyres to mention some.

The surface course construction and the traffic characteristics affect the particle generation, where the surface course properties that govern the resistance against abrasion wear also affect the generation of wear particles.

Other aspects which are affected by the road surface and tyre interaction is the generation of noise and the rolling resistance. Noise has, as for particles, an negative impact on health and the road surface and tyre interaction is the dominating source from about 15 km/h to 25 km/h for light traffic and from about 30 to 35 km/h for heavy traffic. Several mechanisms generate or amplifies the noise and is connected to the surface characteristics such as the macrotexture. Rolling resistance is the conversion of mechanical energy to heat for a rolling tyre and is affected by both the road surface and tyre deflections and deformations and are affected by the surface characteristics such as unevenness and the macrotexture. The rolling resistance is linked to fuel consumption and in extension to exhaust emissions. Another functional property is the friction which is affected by the road surface characteristics by the micro- and macrotexture.

There are several measures to reduce road dust loads and PM10. The measures can be either preventive or mitigative. Measures aimed at changing the traffic situation and the tyre usage, changing of the road surface wear course, cleaning of the road surface and dust binding are described.

Several methods has been used in the studies discussed in the thesis and consist of a large-scale road simulator, the usage of laser measurement systems for determination of road abrasion wear and texture respectively, a prediction model for studded tyre abrasion wear and the NORTRIP model for modelling of non-exhaust particle emissions from road traffic. Also used was a commercial system for traffic measurements and a method for determining the proportion of studded tyre usage. Road dust was sampled and quantified using the WDS (Wet Dust Sampler) method and the collected dust was quantified and characterised using a laboratory method and by using laser granulometry.  Turbidity was used as an approximation of the road dust load.

Five papers are appended to the thesis. The first paper describes the calibration of the Swedish studded tyre abrasion wear prediction model and the effect it has on the NORTRIP model, in which the abrasion wear model is implemented. The second paper describes the macrotexture of different surface wear courses and how different texture measures could be used to describe the potential dust storage capability. The third paper investigate the WDS-method regarding its performance regarding water and how the water performance theoretically affects potential dust losses. The fourth paper describe the spatial and temporal variation of road dust for six winter and spring seasons in Stockholm, Sweden, for several streets with SMA (Stone Mastic Asphalt) pavements. The fifth paper describe a similar investigation performed in Linköping, Sweden, during one winter and spring season for a double layered porous asphalt and for an SMA which acted as a reference. When applicable, the results from Linköping was compared to those from Stockholm.

The results showed that the abrasion wear modelling overestimated the abrasion wear by approximately 50% which caused the NORTRIP model to overestimate the contribution from the abrasion wear to the particle emissions, which was not surprising. However, it is not likely that the NORTRIP model gets a decrease of the emissions 50% since the road surface and tyre interaction is complex and several aspects affects the abrasion wear and the resulting generation and storage of road dust, including, but not limited to, polishing of the road surface, increased abrasion wear for wet surfaces.

The results from the WDS investigation showed that the method seems to function well, given the limitations of the study. The largest water loss was the water retained on the road surface. It also seems like most of the dust is collected. The discussions also consider how the WDS method uses water and the strengths and weaknesses this has compared to dry sampling methods.

The results from the spatial and temporal variation of the road dust loads in Stockholm showed that there are differences between seasons and there is a difference between the dust loads in the wheeltracks and between wheeltracks. In some cases, differences were seen between the streets with large variations, which could be expected since the road dust load is dependent on the traffic characterization, road operation, deposition of material on the surface and the meteorology.  Another result was that an increasing macrotexture seemed to result in an increase in dust loads. The macrotexture was, generally, lower between the wheeltracks and higher in the wheeltracks, which was not surprising due to the traffic impact on the texture development. The macrotexture was, however, only measured at a single occasion. The repaving of a SMA surface course to a more abrasion resistant SMA surface course resulted in a higher dust load compared the before the repaving, while visual observation of the road surface implied a rougher macrotexture. This could, however, have been affected by an increased abrasion wear which occur during the first winter season due to a higher initial abrasion wear. The results in Linköping showed similar temporal and spatial variations as in Stockholm for the investigated SMA surface course. It was also discussed how the double layered porous pavements construction affect the particle transport processes. In the comparison between Stockholm and Linköping, it was suggested that the dust binding and cleaning in Stockholm affect the dust load since these measures are not performed in Linköping which is possibly reflected in the dust loads in and between wheeltracks.

How different texture measures could be used to characterize the road surface texture and its connection to the dust load storage was also discussed, including a discussion of which measures that could be used. It is, however, also noted that the measures discussed the measure that should be used is not necessarily discovered yet.

The discussion also mention the lack of a holistic approach regarding the road surface and tyre interaction which simultaneously consider effect such as abrasion wear particles, noise and rolling resistance. Some measures seem to be of interest to improve at least two aspects simultaneously, for example the usage of a double layered porous pavement or texture optimisation. Different strength and weaknesses are discussed for the different mechanisms affecting the different aspects as well as how some mechanisms should be further studies from other perspectives, for example noise mechanisms which may be interesting from a particle perspective.

The thesis ends with giving some suggestions for continued research to increase the knowledge. This concern abrasion wear modelling and road dust emission modelling where the road surface texture should be considered. Also suggested is that mechanisms from other aspects of the road surface and tyre interaction, for example those affecting noise, also should be investigated and be used to explain mechanisms related to road dust generation and suspension. Several combined investigations are suggested for studying several aspects from or affecting the road surface tyre interaction simultaneously, including noise, rolling resistance, the road surface characteristics, road abrasion wear, abrasion nwear particles, the road dust loads, the suspension of particles and friction which is required to finally achieve the holistic knowledge required to at least minimise conflicts of interest between different functional properties for road surface courses.

Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan , 2020. , p. 134
Keywords [en]
Road dust, Road abrasion wear, Studded tyre abrasion wear, Texture, Emissions, Abrasion wear model, NORTRIP, PM10, Particles, Stone Mastic Asphalt – SMA, Porous Pavements, Double Layered Porous Asphalt Concrete – DLPAC, Road traffic noise, Rolling Resistance, Friction, Holistic, Function, Functional properties, Functional demands, Temporal variation, Spatial variation
Keywords [sv]
Vägdamm, Vägslitage, Dubbdäcksslitage, Textur, Emissioner, Slitagemodell, NORTRIP, PM10, Partiklar, Asfaltsbetong, stenrik - ABS, Dränerande beläggning, Dubbeldränerande beläggning, Buller, Rullmotstånd, Friktion, Holistisk, Funktion, Funktionskrav, Tidsvariation, Rumsvariation
National Category
Infrastructure Engineering Other Earth and Related Environmental Sciences Geosciences, Multidisciplinary Other Civil Engineering
Identifiers
URN: urn:nbn:se:vti:diva-15245ISBN: 978-91-7873-535-8 (print)OAI: oai:DiVA.org:vti-15245DiVA, id: diva2:1431081
Public defence
2020-06-02, Registrera dig här: https://kth-se.zoom.us/webinar/register/WN_vZiy4PpORU2GrLe-nbAwaw, Du som saknar dator/datorvana kan kontakta thoyra@kth.se för information/Use the e-mail address if you need technical assistance, 09:00 (English)
Opponent
Supervisors
Funder
Swedish Transport AdministrationAvailable from: 2020-05-19 Created: 2020-05-19 Last updated: 2020-05-19Bibliographically approved
List of papers
1. Calibration of the Swedish studded tyre abrasion wear prediction model with implication for the NORTRIP road dust emission model
Open this publication in new window or tab >>Calibration of the Swedish studded tyre abrasion wear prediction model with implication for the NORTRIP road dust emission model
2019 (English)In: The international journal of pavement engineering, ISSN 1029-8436, E-ISSN 1477-268XArticle in journal (Refereed) Published
Abstract [en]

An experimentally based prediction model of road abrasion wear due to studded tyres is available in Sweden and has been found to work well. However, it has not been validated since 2007, and since then road surfaces and tyre design have developed, and the question has arisen regarding the model’s current validity. The abrasion wear model is used in the NORTRIP emission model (NOn-exhaust Road Traffic Induced Particle emission modelling), and the effect of a recalibrated abrasion wear model on the emission model is shown. In this paper, the abrasion wear model is compared to full-scale field measurements at several recently constructed roads in Sweden to investigate its validity, while also proposing changes to allow for continued use. It is concluded that the model overestimates the wear and an update is suggested. In addition, the impact on NORTRIP emission predictions is briefly investigated. There were also indications that NORTRIP is affected by the abrasion model overestimating the contribution of pavement wear to the particle emissions.

Place, publisher, year, edition, pages
Taylor and Francis Ltd., 2019
Keywords
Studded tyre, Wear, Abrasion, Dust, Mathematical model, Calibration
National Category
Infrastructure Engineering
Research subject
30 Road: Highway design, 33 Road: Surfacing; 10 Road: Transport, society, policy and planning, 15 Road: Environment
Identifiers
urn:nbn:se:vti:diva-13967 (URN)10.1080/10298436.2019.1614585 (DOI)2-s2.0-85065747784 (Scopus ID)
Available from: 2019-06-05 Created: 2019-06-05 Last updated: 2020-05-19Bibliographically approved
2. Texture influence on road dust load
Open this publication in new window or tab >>Texture influence on road dust load
2017 (English)In: Proceedings of the 22nd International Transportation and Air Pollution Conferens, 2017, p. 14-Conference paper, Published paper (Refereed)
Abstract [en]

The objective of this study was to investigate the connection between pavement texture and the maximum dust load retention at a low speed. One of the main sources of PM (Particulate Matter) in the urban environment is the traffic. Traffic contributes not only to exhaust emissions, but also to direct emission from abrasion wear of pavements, tyres and brakes as well as emission from suspension of available road dust on the road surface. This dust is partially stored in the road surface macro texture. Dust accumulate on the surface due to several different mechanisms and transport phenomena’s. Examples of transport mechanisms affecting the road dust load and thus the storage in the texture include precipitation, evaporation, turbulence from traffic, wetting of the road surface binding particles to it, sanding and crushing of the sand etc.

Keywords
Surface texture, Particulate matter, Dust, Macrotexture
National Category
Infrastructure Engineering
Research subject
10 Road: Transport, society, policy and planning, 15 Road: Environment; 30 Road: Highway design, 33 Road: Surfacing
Identifiers
urn:nbn:se:vti:diva-12783 (URN)9783905594676 (ISBN)
Conference
TAP - Transportation and Air Pollution
Available from: 2018-02-09 Created: 2018-02-09 Last updated: 2020-05-19Bibliographically approved
3. Wet Dust Sampler: a Sampling Method for Road Dust Quantification and Analyses
Open this publication in new window or tab >>Wet Dust Sampler: a Sampling Method for Road Dust Quantification and Analyses
Show others...
2019 (English)In: Water, Air and Soil Pollution, ISSN 0049-6979, E-ISSN 1573-2932, Vol. 230, no 8, article id 180Article in journal (Refereed) Published
Abstract [en]

In northern countries, the climate, and consequently the use of studded tyres and winter traction sanding, causes accumulation of road dust over winter and spring, resulting in high PM10 concentrations during springtime dusting events. To quantify the dust at the road surface, a method—the wet dust sampler (WDS)—was developed allowing repeatable sampling also under wet and snowy conditions. The principle of operation is flushing high-pressurised water over a defined surface area and transferring the dust laden water into a container for further analyses.

In this paper, the latest version of the WSD is presented together with an evaluation of its performance. To evaluate the WDS, the ejected water amount was measured, as well as water losses in different parts of the sampling system, together with indicative dust measurement using turbidity as a proxy for dust concentration. The results show that the WDS, when accounting for all losses, have a predictable and repeatable water performance, with no impact on performance based on the variety of asphalt surface types included in this study, given undamaged surfaces. The largest loss was found to be water retained on the surface, and the dust measurements imply that this might not have as large impact on the sampled dust as could be expected. A theoretical particle mass balance shows small particle losses, while field measurements show higher losses. Several tests are suggested to validate and improve on the mass balances. Finally, the WDS is found to perform well and is able to contribute to further knowledge regarding road dust implications for air pollution.

Place, publisher, year, edition, pages
Springer, 2019
Keywords
Particulate matter, Method, Measurement, Apparatus (measuring), Sample (mater), Dust, Repeatability, Prediction, Performance, Evaluation (assessment)
National Category
Oceanography, Hydrology and Water Resources
Research subject
10 Road: Transport, society, policy and planning, 15 Road: Environment
Identifiers
urn:nbn:se:vti:diva-14085 (URN)10.1007/s11270-019-4226-6 (DOI)2-s2.0-85069672194 (Scopus ID)
Available from: 2019-08-20 Created: 2019-08-20 Last updated: 2020-05-19Bibliographically approved
4. Road dust load dynamics and influencing factors for six winter seasons in Stockholm, Sweden
Open this publication in new window or tab >>Road dust load dynamics and influencing factors for six winter seasons in Stockholm, Sweden
Show others...
2019 (English)In: Atmospheric Environment: X, ISSN 2590-1621, Vol. 2, article id 100014Article in journal (Refereed) Published
Abstract [en]

Traffic related non-exhaust particulate sources and road dust are an increasingly important source for PM10 air pollution as exhaust sources are decreasing due to regulations. In the Nordic countries, the road dust problem is enhanced by use of studded tyres, causing increased road wear and winter road maintenance including gritting. Efforts to reduce road dust emissions requires knowledge on temporal and spatial road dust load dynamics. The city of Stockholm, Sweden, has therefore financed seasonal (October to May) road dust sampling to be able to optimize their winter and spring time street operation measures for reduced road dust emissions. This work describes the outcome of six seasons (2011/2012–2016/2017) of road dust sampling in five central streets using the VTI wet dust sampler (WDS).The results show that road dust load, expressed as DL180 (dust load smaller than 180 μm) has a seasonal variation with the highest loads (up to 200 g/m2) in late winter and early spring and a minimum (down to about 15 g/m2) in early autumn and late spring. The dust load varies between streets and is depending on pavement surface properties. On a smaller scale the dust load has a high variability across streets due to differences in rates of suspension from different parts of the road surface, with low amounts in wheel tracks and higher in-between and outside the tracks. Between 2 and 30% of the DL180 is smaller than 10 μm and could directly contribute to PM10 emissions. In general, higher road surface texture leads to higher dust loads, but the condition of the pavement (e.g. cracks, aggregate loss) might also have an effect. A new, wear resistant pavement accumulated markedly higher road dust amounts than a several years old pavement. This paper closes with a discussion on the complex relation between road dust load and PM10 concentrations and a discussion on the challenges and comparability of road dust sampling techniques and measures.

Place, publisher, year, edition, pages
Elsevier Ltd, 2019
Keywords
Dust, Particulate matter, Sampling, Season, Variability, Surface texture
National Category
Infrastructure Engineering
Research subject
10 Road: Transport, society, policy and planning, 15 Road: Environment
Identifiers
urn:nbn:se:vti:diva-13645 (URN)10.1016/j.aeaoa.2019.100014 (DOI)2-s2.0-85061003909 (Scopus ID)
Available from: 2019-05-17 Created: 2019-05-17 Last updated: 2020-05-19Bibliographically approved
5. Temporal variation of road dust load and its size distribution: a comparative study of a porous and a dense pavement
Open this publication in new window or tab >>Temporal variation of road dust load and its size distribution: a comparative study of a porous and a dense pavement
Show others...
(English)Manuscript (preprint) (Other academic)
Keywords
Road Dust, Organic fraction, Particle Size Distribution, Temporal Variation, Stone Mastic Asphalt - SMA, Double Layered Porous Asphalt Concrete – DLPAC, Low Noise Pavement
National Category
Infrastructure Engineering Environmental Sciences Other Earth and Related Environmental Sciences
Identifiers
urn:nbn:se:vti:diva-15249 (URN)
Available from: 2020-05-19 Created: 2020-05-19 Last updated: 2020-05-19Bibliographically approved

Open Access in DiVA

fulltext(6023 kB)8 downloads
File information
File name FULLTEXT01.pdfFile size 6023 kBChecksum SHA-512
0d01fd7299f2dda9dbc05349033a34c67688ab7be620f753ffc84c7d30a215b9fa2a047259b03458c031913a5cd83d0de3cc9ab704ef485a006d064538f1cab4
Type fulltextMimetype application/pdf

Authority records BETA

Lundberg, Joacim

Search in DiVA

By author/editor
Lundberg, Joacim
By organisation
Environment
Infrastructure EngineeringOther Earth and Related Environmental SciencesGeosciences, MultidisciplinaryOther Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 8 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 9 hits
12345673 of 14
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf