Publications
Change search
Link to record
Permanent link

Direct link
BETA
Publications (10 of 74) Show all publications
Johansen, T. C. & Fors, C. (2019). Method description - assessment of road marking materials used in contracts.: Version 2:2019 Nordic certification system for road marking materials.. Linköping: Statens väg- och transportforskningsinstitut
Open this publication in new window or tab >>Method description - assessment of road marking materials used in contracts.: Version 2:2019 Nordic certification system for road marking materials.
2019 (English)Report (Other academic)
Alternative title[sv]
Metodbeskrivning - kontroll av vägmarkeringsmaterial som används i kontrakt. : Version 2:2019 Nordiskt certifieringssystem för vägmarkeringsmaterial
Abstract [en]

A Nordic certification system for road marking materials was introduced in 2015. In the first stage, the certification system applies to the countries of Denmark, Norway and Sweden. Iceland is joining the certification system in 2019. In these countries, a documented product approval will be required in order to use a road marking material on roads managed by the national road authorities. Product approval will be based on monitored and documented performance measurements of material samples applied on test fields on public roads.

In order to be able to assess whether the (approved) road marking materials that are specified in contracts with a national road authority correspond to the materials that are applied on the roads, an assessment system is introduced. The present report describes this assessment system.

The assessment system prescribes that material samples shall be taken when road marking materials are applied on the roads. Some of the samples will then be sent to an accredited laboratory for analysis. The report describes how the material samples are selected, collected and analysed, and how the result is reported. It also describes the contractor’s responsibilities related to sample collection and the required competences of the assessment organization.

Abstract [sv]

Ett nordiskt certifieringssystem för vägmarkeringsmaterial introducerades år 2015 och omfattar i ett första steg Danmark, Norge och Sverige. Island ansluter till systemet under 2019. I dessa länder krävs (eller kommer inom kort att krävas) ett dokumenterat godkännande av vägmarkeringsmaterial som används på vägar som administreras av den statliga väghållaren. Detta godkännande baseras på funktionsmätningar på vägmarkeringar som har applicerats på provfält.

För att kunna kontrollera och följa upp att de (godkända) vägmarkeringsmaterial som har specificerats i kontrakt med en statlig väghållare stämmer överens med de material som sedan läggs ut på vägen, har ett kontrollsystem utformats. Föreliggande rapport beskriver detta kontrollsystem.

Kontrollsystemet innebär att materialprover tas i samband med att vägmarkeringar utförs på vägen. Ett urval av proverna skickas sedan till ett ackrediterat laboratorium för analys. Rapporten beskriver hur prover väljs ut, samlas in och analyseras, samt hur resultatet rapporteras. Den beskriver också entreprenörens skyldigheter i samband med provtagning och de kompetenser som krävs hos organisationen som utför kontrollen.

Place, publisher, year, edition, pages
Linköping: Statens väg- och transportforskningsinstitut, 2019. p. 21
Series
VTI notat ; 9A-2019
Keywords
Carriageway marking, Material (constr), Field (test), Performance, Retroreflection, Luminance, Friction, Specifications, Norway, Sweden
National Category
Infrastructure Engineering
Research subject
50 Road: Materials; 50 Road: Materials, 55 Road: Miscellaneous materials
Identifiers
urn:nbn:se:vti:diva-13991 (URN)
Note

Please note that this document is an updated version of a publication released 2018. See http://urn.kb.se/resolve?urn=urn:nbn:se:vti:diva-12873

Available from: 2019-06-28 Created: 2019-06-28 Last updated: 2019-06-28Bibliographically approved
Johansen, T. C. & Fors, C. (2019). Nordic certification of road marking materials in Denmark 2017–2019. Linköping: Statens väg- och transportforskningsinstitut
Open this publication in new window or tab >>Nordic certification of road marking materials in Denmark 2017–2019
2019 (English)Report (Other academic)
Alternative title[sv]
Nordisk certifiering av vägmarkeringsmaterial i Danmark 2017–2019
Abstract [en]

A Nordic certification system for road marking materials, that applies to the countries of Denmark, Iceland, Norway and Sweden, was introduced in 2015. In these countries, a documented product approval is required in order to use a road marking material on roads managed by the national road authorities (Iceland from 2020). Product approval is based on monitored and documented performance measurements of material samples applied on test fields on public roads. The materials are approved (certified) in relation to the number of wheel passages they will stand, with preserved function.

The certification system includes road marking materials for longitudinal and transverse road markings in categories with respect to colour (white, yellow), type (type I, type II, type II inlaid, antiskid, hand application, non-reflective with enhanced durability, and temporary) and thickness (0.4, 0.6, 1.5, 3 and 5 mm).

The present report documents the follow-up performance measurements that were carried out at the Danish test site in 2019, i.e. one-year follow-up measurements for materials applied in 2018 and the two years follow-up measurements for materials applied in 2017. The performance parameters include the coefficient of retroreflected luminance (RL) under dry and wet conditions, the luminance coefficient under diffuse illumination (Qd), the friction, and the chromaticity in daylight.

Abstract [sv]

En nordisk certifiering av vägmarkeringsmaterial introducerades 2015 och omfattar för närvarande Danmark, Island, Norge och Sverige. I dessa länder krävs ett dokumenterat godkännande av vägmarkeringsmaterial som används på vägar som administreras av den statliga väghållaren (Island från och med 2020). Detta godkännande baseras på funktionsmätningar på materialprover som har applicerats på provfält på allmän väg. Materialen godkänns (certifieras) i relation till antalet hjulpassager de klarar med bibehållen funktion.

Certifieringssystemet omfattar vägmarkeringsmaterial för längsgående och tvärgående vägmarkeringar i olika kategorier med avseende på färg (vit, gul), typ (typ I, typ II, nedfräst typ II, friktion, handläggning, slitstarka icke-reflekterande samt temporära) och tjocklek (0,4; 0,6; 1,5; 3 och 5 mm).

Föreliggande rapport dokumenterar resultaten från de uppföljande funktionsmätningar som gjordes på det danska provfältet 2019, det vill säga ettårsuppföljning av material som lades ut 2018 och tvåårsuppföljning av material som lades ut 2017. Funktionsmätningarna omfattar retroreflexion (RL) i torrt och vått tillstånd, luminanskoefficient (Qd), friktion och färg i dagsljus.

Place, publisher, year, edition, pages
Linköping: Statens väg- och transportforskningsinstitut, 2019. p. 42
Series
VTI rapport, ISSN 0347-6030 ; 1021A
National Category
Infrastructure Engineering
Identifiers
urn:nbn:se:vti:diva-14304 (URN)
Available from: 2019-11-15 Created: 2019-11-15 Last updated: 2019-11-15Bibliographically approved
Johansen, T. C. & Fors, C. (2019). Nordic certification of road marking materials in Iceland, Norway and Sweden 2017–2019. Linköping: Statens väg- och transportforskningsinstitut
Open this publication in new window or tab >>Nordic certification of road marking materials in Iceland, Norway and Sweden 2017–2019
2019 (English)Report (Other academic)
Alternative title[sv]
Nordisk certifiering av vägmarkeringsmaterial i Island, Norge och Sverige 2017–2019
Abstract [en]

A Nordic certification system for road marking materials, that applies to the countries of Denmark, Iceland, Norway and Sweden, was introduced in 2015. In these countries, a documented product approval is required in order to use a road marking material on roads managed by the national road authorities (Iceland from 2020). Product approval is based on monitored and documented performance measurements of material samples applied on test fields on public roads. The materials are approved (certified) in relation to the number of wheel passages they will stand, with preserved function.

The certification system includes road marking materials for longitudinal and transverse road markings in categories with respect to colour (white, yellow), type (type I, type II, type II inlaid, antiskid, hand application, non-reflective with enhanced durability, and temporary) and thickness (0.4, 0.6, 1.5, 3 and 5 mm).

The present report documents the follow-up performance measurements that were carried out at the Norwegian-Swedish test site in 2019, i.e. one-year follow-up measurements for materials applied in 2018 and two-years follow-up measurements for materials applied in 2017. The performance parameters include the coefficient of retroreflected luminance (RL) under dry and wet conditions, the luminance coefficient under diffuse illumination (Qd), the friction, the chromaticity in daylight, and the chromaticity of retroreflected light (yellow materials, only).

Abstract [sv]

En nordisk certifiering av vägmarkeringsmaterial introducerades 2015 och omfattar för närvarande Danmark, Island, Norge och Sverige. I dessa länder krävs ett dokumenterat godkännande av vägmarkeringsmaterial som används på vägar som administreras av den statliga väghållaren (Island från och med 2020). Detta godkännande baseras på funktionsmätningar på materialprover som har applicerats på provfält på allmän väg. Materialen godkänns (certifieras) i relation till antalet hjulpassager de klarar med bibehållen funktion.

Certifieringssystemet omfattar vägmarkeringsmaterial för längsgående och tvärgående vägmarkeringar i olika kategorier med avseende på färg (vit, gul), typ (typ I, typ II, nedfräst typ II, friktion, handläggning, slitstarka icke-reflekterande samt temporära) och tjocklek (0,4; 0,6; 1,5; 3 och 5 mm).

Föreliggande rapport dokumenterar resultaten från de uppföljande funktionsmätningar som gjordes på det norsk-svensk provfältet 2019, det vill säga ettårsuppföljning av material som lades ut 2018 och tvåårsuppföljning av material som lades ut 2017. Funktionsmätningarna omfattar retroreflexion (RL) i torrt och vått tillstånd, luminanskoefficient (Qd), friktion, färg i dagsljus och färg i fordonsbelysning (för gula material).

Place, publisher, year, edition, pages
Linköping: Statens väg- och transportforskningsinstitut, 2019. p. 52
Series
VTI rapport, ISSN 0347-6030 ; 1020A
National Category
Infrastructure Engineering
Identifiers
urn:nbn:se:vti:diva-14303 (URN)
Available from: 2019-11-15 Created: 2019-11-15 Last updated: 2019-11-15Bibliographically approved
Fors, C. & Johansen, T. C. (2019). Nordic certification system for roadmarking materials: Version 6:2019.
Open this publication in new window or tab >>Nordic certification system for roadmarking materials: Version 6:2019
2019 (English)Report (Other academic)
Alternative title[sv]
Nordiskt certifieringssystem för vägmarkeringsmaterial : Version 6:2019
Abstract [en]

A Nordic certification system for road marking materials was introduced in 2015. The system is basedon documented performance measurements of material samples applied on test fields on public roads.The certification system includes both flat (type I) and structured/profiled (type II) markings, antiskidmaterials (materials with enhanced friction), temporary markings (Denmark only) and inlaid markings(Norway only). From 2019, the certification system will also include materials for hand applicationand materials with enhanced durability for illuminated high-traffic urban areas.

Material tests are carried out at two test sites: one in Norway and one in Denmark. The tests fields aresituated on public roads and the tested materials are thus exposed to real traffic conditions and toweather conditions representative for the Nordic countries. The materials are followed up byperformance measurements during one or two years. The certification includes requirements oncoefficient of retroreflected luminance RL under dry and wet conditions, luminance coefficient underdiffuse illumination Qd, friction and colour coordinates. The number of wheel passages is measured atthe test sites annually. The certification system includes material identification, which allows forfuture material sampling and analysis.

The certification system is based on the European standards EN 1824 Road marking materials – Roadtrials, EN 1436 Road marking materials – Road marking performance for road users, and EN 12802Road marking materials – Laboratory methods for identification.

The report describes the certification system and how it is applied in the Nordic countries. Proceduresand methods that are used for application of materials and performance measurements are specified.

Abstract [sv]

Ett nordiskt certifieringssystem för vägmarkeringsmaterial introducerades under 2015. Systemetbaseras på dokumenterade materialtester på provfält, där materialen certifieras utifrån hur mångahjulpassager de klarar. Certifieringssystemet omfattar både plana (typ I) och profilerade/våtsynbara(typ II) markeringar, friktionsmaterial (material med förbättrad friktion), temporära markeringar(endast Danmark) och nedfrästa markeringar (endast Norge). Från och med 2019 kommercertifieringssystemet även att inkludera tvärgående material (material för handläggning) samt slitstarkamaterial utan krav på retroreflexion för högtrafikerade belysta vägar.

Materialtester görs på två provfält: ett i Norge och ett i Danmark. Provfälten är placerade på allmänväg och materialen som testas är exponerade för reell trafik samt för väderförhållanden representativaför de nordiska länderna. Materialen följs upp med funktionsmätningar under ett eller två år.Certifieringen omfattar krav på retroreflexion RL, luminanskoefficient Qd, friktion ochfärgkoordinater. Antalet hjulpassager materialen utsätts för mäts årligen.

Certifieringssystemetinkluderar även materialidentifiering, vilket möjliggör senare stickprovskontroller vid entreprenader.Certifieringssystemet baseras på europastandarderna EN 1824 Road marking materials – Road trials,EN 1436 Road marking materials – Road marking performance for road users, samt EN 12802 Roadmarking materials – Laboratory methods for identification.

Rapporten beskriver hur certifieringssystemet fungerar och hur det tillämpas i de nordiska länderna.Vidare beskrivs de procedurer och metoder som används på provfälten vid utläggning av material,samt vid mätning av materialens funktionsparametrar.

Publisher
p. 53
Series
VTI notat ; 10A-2019
Keywords
Carriageway marking, Material (constr), Paint, Performance, Field (test), Measurement, Retroreflection, Luminance, Friction, Official approval, Denmark, Norway, Sweden, Specification (standard)
National Category
Infrastructure Engineering
Research subject
50 Road: Materials; 50 Road: Materials, 55 Road: Miscellaneous materials
Identifiers
urn:nbn:se:vti:diva-14091 (URN)
Note

Please note that this document is an updated version of a publication released 2018. See http://urn.kb.se/resolve?urn=urn:nbn:se:vti:diva-13101

Available from: 2019-08-21 Created: 2019-08-21 Last updated: 2019-09-30Bibliographically approved
Vadeby, A., Kjellman, E., Fors, C., Lundkvist, S.-O., Nielsen, B., Johansen, T. C. & Nilsson, C. (2019). ROMA: State assessment of road markings in Denmark, Norway and Sweden 2017–2021.
Open this publication in new window or tab >>ROMA: State assessment of road markings in Denmark, Norway and Sweden 2017–2021
Show others...
2019 (English)Report (Other academic)
Alternative title[sv]
ROMA : en studie av vägmarkeringars tillstånd i Danmark, Norge och Sverige - resultat från 2018
Abstract [en]

Assessments of the performance of road markings is carried out regularly to various degrees in the Nordic countries. The main aim of the Nordic road marking assessment study is to show possible differences in road marking performance between Denmark, Norway and Sweden. Possible differences between road marking performance, dependent on region, country, type of road and AADT (Annual Average Daily Traffic) are studied. Furthermore, a comparison between the TEN-T and the non-TEN-T road network is made. As 2018 is the second year of the project, a comparison between the results for 2017 and 2018 is also made.

A Nordic certification system for road marking materials has recently been introduced in Norway and Denmark and will be introduced in Sweden 2019. This means that a documented product approval (i.e. certification) will be required for use of the material on roads managed by the national road authorities. The requirements are introduced successively as the existing contracts expire. Therefore, one aim is also to study the road marking quality before and under the introduction of the new certification requirements. Continuous assessments give the opportunity to react and adjust the requirements in the future, if the performance does not develop as expected.

The study is based on physical mobile road assessment measurements carried out in Denmark, Norway and Sweden by Ramböll. In total 71 road objects were measured in Denmark, 124 in Norway and 434 in Sweden. The following variables were studied: retroreflectivity of dry and wet road markings, relative visibility of dry and wet road markings, relative pre-view-time (pvt) of dry and wet road markings and cover index.

The results show that the retroreflectivity requirement of dry road markings (150 mcd/m2/lx) is roughly fulfilled in 50 % of the measured objects. Road markings in Denmark have lower retroreflectivity than those in Norway and Sweden. Some retroreflectivity values are low, e.g. motorway edge lines in Denmark. However, this is compensated for by a large area, which nevertheless means good visibility. Contrary: edge lines on Swedish two-lane roads have high retroreflectivity, which would imply good visibility. However, the road marking area is small, thus reducing the visibility in comparison with both Danish and Norwegian edge lines.

Regarding wet road markings, road markings in Norway have higher retroreflectivity than Denmark and Sweden for every road class. This can probably be explained by the fact that Norway often has inlaid road markings, a solution seldom used in Denmark and Sweden. When analysing the results for wet road markings it should be noted that significant deviations be-tween the results from the mobile measurements and the hand-held measurements were shown during the annual validation of mobile instruments in 2017 and 2018 and therefore, the results for wet road markings should be interpreted with care.

A comparison between the retroreflectivity on the Trans-European Transport Network (TEN-T) and other roads showed that there were only minor differences between the TEN-T and other roads in Denmark, while in Norway and Sweden there are somewhat higher levels for the TEN-T network. The results for relative visibility show larger differences between TEN-T and non-TEN-T and in all three countries, the relative visibility is higher for the TEN-T road network. However, studying the rela-tive pre-view-time shows that in all countries, this measure is lower on the TEN-T roads, due to higher speed limits on the TEN-T road network. For Norway and Sweden, the differences in pvt between TEN-T and other roads are rather small, while for Denmark the difference is significant, and the relative pre-view time is about 0.6 s shorter on the TEN-T roads than on other roads.

There is no significant difference in cover index between the countries, but between road classes the difference is significant. Lane and centre lines seem to have a higher cover index than edge lines. This is difficult to explain, but the reason might be that lane and centre lines are reconditioned almost every year, due to many wheel roll overs. If so, measurements were car-ried out on almost new lane and centre lines, while the edge lines might have been applied in earlier years. Another explanation might be that the edge lines are profiled to a higher extent than the lane and centre lines.

In the second year of the project, it is not possible to study any effect of the Nordic certification system for road markings. However, in the coming years, some effects might be possible to register.

In conclusion, there is no large difference in road marking performance between the three countries and comparing the re-sults between 2017 and 2018 shows no major differences on country level. For both 2017 and 2018 the main conclusion is the poor visibility of edge lines on two-lane roads in Sweden and the good performance of wet road markings in Norway.

Abstract [sv]

Vägmarkeringarnas tillstånd studeras regelbundet i olika omfattning i de nordiska länderna. Det huvudsakliga syftet med före-liggande studie är att med tillståndmätningar visa på eventuella skillnader avseende vägmarkeringsprestanda mellan Dan-mark, Norge och Sverige. Då 2018 är projektets andra år, görs även en jämförelse mellan resultaten mellan 2017 och 2018.

Ett nordiskt certifieringssystem för vägmarkeringsmaterial har nyligen införts i Norge och Danmark och kommer att införas i Sverige under 2019. Detta innebär att ett dokumenterat produktgodkännande (certifiering) kommer att krävas för att materi-alet ska få användas på vägar som förvaltas av de nationella vägmyndigheterna. De nya kraven införs succesivt efter att de befintliga entreprenaderna löper ut. Ett annat syfte med föreliggande studie är därför att få en bra bild av vägmarkeringarnas funktion dels innan det nya certifieringssystemet börjar tillämpas, dels att med fortsatta mätningar under 2019 – 2021 stu-dera utvecklingen och effekterna av certifieringens införande.

Studien baseras på fysikaliska mobila tillståndsmätningar utförda i Danmark, Norge och Sverige av Ramböll. Totalt mättes 71 vägobjekt i Danmark, 124 i Norge och 434 i Sverige. Följande variabler studerades: retroreflexion för torra och våta vägmarke-ringar, relativ synbarhet för torra och våta vägmarkeringar, relativ pre-view-time (pvt) för torra och våta vägmarkeringar samt vägmarkeringens täckningsgrad.

Resultaten visar att retroreflexionskravet för nya, torra vägmarkeringar (150 mcd/m2/lx) är uppfyllt för ca 50 % av de stude-rade vägobjekten. Vägmarkeringar i Danmark har lägre retroreflektion än Norge och Sverige. Speciellt låg retroreflexion kan ses på kantlinjer på motorvägar i Danmark. Detta kompenseras dock av att dessa vägmarkeringar har en stor area, vilket inne-bär att synbarheten ändå blir god. För tvåfältsvägar i Sverige är situationen den omvända, där har kantlinjerna hög retrore-flexion, men arean är liten och synbarheten blir därmed lägre än i Danmark och Norge. När våta vägmarkeringar studeras har Norge högre retroreflexion än både Danmark och Sverige. Detta gäller även för relativ synbarhet och pvt. En förklaring till den höga retroreflektionen kan vara att Norge, till skillnad från Danmark och Sverige, ofta har nedfrästa vägmarkeringar vilket minskar slitaget. Det bör dock påpekas att resultaten för retroreflektion på våta vägmarkeringar bör tolkas försiktigt eftersom stora avvikelser registrerades mellan de mobila mätningarna och de manuella referensmätningarna under 2017 och 2018.

En jämförelse mellan retroreflexionen på det TransEuropeiska Transportvägnätet (TEN-T) och andra vägar visade att det endast finns mindre skillnader mellan TEN-T vägnätets och övrigt vägnäts vägmarkeringar i Danmark, medan retroreflexionen i Norge och Sverige är något högre för TEN- T-vägnätet. Resultaten avseende synbarhet visar större skillnader mellan TEN-T eller icke-TEN-T och för alla ingående länder är synbarheten längre för TEN-T-vägnätet. Studerar man skillnader i relativ pvt är den genomgående kortare på TEN-T vägnätet, främst på grund av att hastigheten är högre på TEN-T vägnätet än på övrigt vägnät. För Norge och Sverige är skillnaderna dock små, men för Danmark är pvt ungefär 0,6 sekunder kortare på TEN-T än övrigt vägnät.

Under projektets andra år är det inte möjligt att studera någon effekt av det nordiska certifieringssystemet, men förhopp-ningsvis kommer vi kunna se effekter längre fram i projektet.

Jämför man resultaten mellan 2017 och 2018 är skillnaden i funktion liten. Sammanfattningsvis är det ganska små skillnader i vägmarkeringarnas funktion när man jämför Danmark, Norge och Sverige. Undantagen är den relativt låga synbarheten hos kantlinjerna på svenska tvåfältsvägar, trots en hög retroreflexion, och en hög synbarhet hos våta vägmarkeringar i Norge.

Publisher
p. 113
Series
NordFoU ; 2019-10
Keywords
Traffic sign, Retroreflection, Carriageway marking, Wet road, Visibility, Time, Average speed, Sweden, Denmark, Norway
National Category
Infrastructure Engineering
Research subject
30 Road: Highway design, 34 Road: Safety devices
Identifiers
urn:nbn:se:vti:diva-14099 (URN)
Available from: 2019-09-19 Created: 2019-09-19 Last updated: 2019-09-19Bibliographically approved
Anund, A., Fors, C., Ihlström, J. & Kecklund, G. (2018). An on-road study of sleepiness in split shifts among city bus drivers. Accident Analysis and Prevention, 114, 71-76
Open this publication in new window or tab >>An on-road study of sleepiness in split shifts among city bus drivers
2018 (English)In: Accident Analysis and Prevention, ISSN 0001-4575, E-ISSN 1879-2057, Vol. 114, p. 71-76Article in journal (Refereed) Published
Abstract [en]

Bus drivers often work irregular hours or split shifts and their work involves high levels of stress. These factors can lead to severe sleepiness and dangerous driving. This study examined how split shift working affects sleepiness and performance during afternoon driving. An experiment was conducted on a real road with a specially equipped regular bus driven by professional bus drivers.

The study had a within-subject design and involved 18 professional bus drivers (9 males and 9 females) who drove on two afternoons; one on a day in which they had driven early in the morning (split shift situation) and one on a day when they had been off duty until the test (afternoon shift situation). The hypothesis tested was that split shifts contribute to sleepiness during afternoon, which can increase the safety risks. The overall results supported this hypothesis. In total, five of the 18 drivers reached levels of severe sleepiness (Karolinska Sleepiness Scale ≥8) with an average increase in KSS of 1.94 when driving in the afternoon after working a morning shift compared with being off duty in the morning. This increase corresponded to differences observed between shift workers starting and ending a night shift. The Psychomotor Vigilance Task showed significantly increased response time with split shift working (afternoon: 0.337. s; split shift 0.347. s), as did the EEG-based Karolinska Drowsiness Score mean/max. Blink duration also increased, although the difference was not significant. One driver fell asleep during the drive. In addition, 12 of the 18 bus drivers reported that in their daily work they have to fight to stay awake while driving at least 2-4 times per month. While there were strong individual differences, the study clearly showed that shift-working bus drivers struggle to stay awake and thus countermeasures are needed in order to guarantee safe driving with split shift schedules.

Place, publisher, year, edition, pages
Elsevier, 2018
Keywords
Fatigue (human), Bus, Driver, Working conditions, Test, In situ
National Category
Applied Psychology
Research subject
80 Road: Traffic safety and accidents, 841 Road: Road user behaviour
Identifiers
urn:nbn:se:vti:diva-11886 (URN)10.1016/j.aap.2017.05.005 (DOI)000428829800011 ()28506403 (PubMedID)2-s2.0-85019144045 (Scopus ID)
Available from: 2017-06-21 Created: 2017-06-07 Last updated: 2019-01-31Bibliographically approved
Kjellman, E., Fors, C. & Lundkvist, S.-O. (2018). Analys av livscykelkostnader för vägmärken med fokus på reflexmaterial. Linköping: Statens väg- och transportforskningsinstitut
Open this publication in new window or tab >>Analys av livscykelkostnader för vägmärken med fokus på reflexmaterial
2018 (Swedish)Report (Other academic)
Alternative title[en]
Analysis of life-cycle costs for road signs with focus on retroreflective sheeting materials
Abstract [sv]

I dagsläget är det okänt om de vägmärken med reflexfolie som finns på svenska vägar uppfyller gällande krav på funktion där god läs- och upptäckbarhet är målet. Det finns ingen inventering av vägmärken på statliga vägar och inget register för vilka vägmärken som har satts upp, när de satts upp och vilken kvalitet de har.

Detta projekt syftar till att analysera livscykelkostnader för vägmärken på statliga vägar genom inventering av befintliga vägmärken på det statliga vägnätet. Livslängden bestäms av flera parametrar men framförallt av retroreflexionskrav enligt Trafikverkets dokument Standardbeskrivning för Basunderhåll Väg (SBV) och färgkrav enligt SS-EN 12899-1.

Livslängden samlades in genom att i fält observera cirka 300 vägmärken. Vägmärkena valdes ut slumpmässigt i Trafikverkets regioner Väst och Mitt. Information om dessa vägmärken såsom tillverkningsår, hur mycket ljus de reflekterar, vilka färgkoordinater de har och vilken kompassriktning de stod i samlades in. Vägmärken med fem olika bottenfärger inventerades; vita (vägvisare till lokalt mål i tätort), blåa (vägvisare för allmän väg), röda (stopplikt), gröna (vägvisare till motorväg eller motortrafikled) och gula (vägvisare för enskild väg). Dessa tillhörde tre olika klasser; RA1, RA2 och RA3B. Klasserna skiljer sig åt vad gäller mängden ljus som reflekteras, där RA3B reflekterar mest. Kostnaderna för vägmärken, stolpe och fundament erhölls via telefonintervjuer med fem olika entreprenörer.

Abstract [en]

It is unknown if the road signs with retroreflective sheeting on Swedish roads meet the current requirements for a performance where good reading and discoverability are the targets. No inventory of road signs on state roads is done and no registry for mounted road signs, date of mounting and quality of signs are available.

This project aims at analyzing life cycle costs for road signs on state roads through inventory of existing road signs on the state road network. Lifetime is determined by several parameters, but primarily by retroreflection requirements according to the Swedish Transport Administration's document Standard Description for Basic Road Maintenance (SBV) and colour requirements according to SS-EN 12899-1.

The lifetime was determined by observing approximately 300 road signs in the field. The road signs were randomly selected from the Swedish Transport Administration's regions West and Mid. Information about these road signs, such as year of manufacture, how much light they reflect, what colour coordinates they have and what compass direction they were mounted in were registered. Road signs with five different bottom colours were invented; white (road to local destination in urban area), blue (public road), red (stop), green (road to or on motorway) and yellow (private roads). The signs belong to three different classes; RA1, RA2 and RA3B. The classes differ in terms of the amount of light reflected, where the RA3B reflects most. The costs of road signs, posts and foundations were collected through telephone interviews with five different contractors.

Place, publisher, year, edition, pages
Linköping: Statens väg- och transportforskningsinstitut, 2018. p. 71
Series
VTI notat ; 23-2018
Keywords
Traffic sign, Reflectorized material, Lifetime, Life cycle, Cost, Ageing, Retroreflection
National Category
Infrastructure Engineering
Research subject
70 Road: Maintenance
Identifiers
urn:nbn:se:vti:diva-13407 (URN)
Available from: 2018-12-04 Created: 2018-12-04 Last updated: 2019-06-10Bibliographically approved
Anund, A., Ahlström, C., Fors, C. & Åkerstedt, T. (2018). Are professional drivers less sleepy than non-professional drivers?. Scandinavian Journal of Work, Environment and Health, 44(1), 88-95
Open this publication in new window or tab >>Are professional drivers less sleepy than non-professional drivers?
2018 (English)In: Scandinavian Journal of Work, Environment and Health, ISSN 0355-3140, E-ISSN 1795-990X, Vol. 44, no 1, p. 88-95Article in journal (Refereed) Published
Abstract [en]

Objective It is generally believed that professional drivers can manage quite severe fatigue before routine driving performance is affected. In addition, there are results indicating that professional drivers can adapt to prolonged night shifts and may be able to learn to drive without decreased performance under high levels of sleepiness. However, very little research has been conducted to compare professionals and non-professionals when controlling for time driven and time of day.

Method The aim of this study was to use a driving simulator to investigate whether professional drivers are more resistant to sleep deprivation than non-professional drivers. Differences in the development of sleepiness (self-reported, physiological and behavioral) during driving was investigated in 11 young professional and 15 non-professional drivers.

Results Professional drivers self-reported significantly lower sleepiness while driving a simulator than nonprofessional drivers. In contradiction, they showed longer blink durations and more line crossings, both of which are indicators of sleepiness. They also drove faster. The reason for the discrepancy in the relation between the different sleepiness indicators for the two groups could be due to more experience to sleepiness among the professional drivers or possibly to the faster speed, which might unconsciously have been used by the professionals to try to counteract sleepiness.

Conclusion Professional drivers self-reported significantly lower sleepiness while driving a simulator than non-professional drivers. However, they showed longer blink durations and more line crossings, both of which are indicators of sleepiness, and they drove faster.

Place, publisher, year, edition, pages
SCANDINAVIAN JOURNAL WORK ENVIRONMENT & HEALTH, 2018
Keywords
Fatigue (human), Driver, Professional category, Simulator (driving), Speed, Behaviour
National Category
Applied Psychology
Research subject
80 Road: Traffic safety and accidents, 841 Road: Road user behaviour
Identifiers
urn:nbn:se:vti:diva-12735 (URN)10.5271/sjweh.3677 (DOI)000418916600010 ()29018866 (PubMedID)2-s2.0-85040066980 (Scopus ID)
Available from: 2018-05-17 Created: 2018-05-17 Last updated: 2018-06-12Bibliographically approved
Abtahi, F., Anund, A., Fors, C., Seoane, F. & Lindecrantz, K. (2018). Association of drivers’ sleepiness with heart rate variability: A pilot study with drivers on real roads. In: IFMBE Proceedings: . Paper presented at Joint Conference of the European Medical and Biological Engineering Conference, EMBEC 2017 and Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, NBC 2107, 11 June 2017 through 15 June 2017 (pp. 149-152). Springer Verlag, 65
Open this publication in new window or tab >>Association of drivers’ sleepiness with heart rate variability: A pilot study with drivers on real roads
Show others...
2018 (English)In: IFMBE Proceedings, Springer Verlag , 2018, Vol. 65, p. 149-152Conference paper, Published paper (Refereed)
Abstract [en]

Vehicle crashes lead to huge economic and social consequences, and one non-negligible cause of accident is driver sleepiness. Driver sleepiness analysis based on the monitoring of vehicle acceleration, steering and deviation from the road or physiological and behavioral monitoring of the driver, e.g., monitoring of yawning, head pose, eye blinks and eye closures, electroencephalogram, electrooculogram, electromyogram and electrocardiogram (ECG), have been used as a part of sleepiness alert systems.

Heart rate variability (HRV) is a potential method for monitoring of driver sleepiness. Despite previous positive reports from the use of HRV for sleepiness detection, results are often inconsistent between studies. In this work, we have re-evaluated the feasibility of using HRV for detecting drivers’ sleepiness during real road driving. A database consists of ECG measurements from 10 drivers, driving during morning, afternoon and night sessions on real road were used. Drivers have reported their average sleepiness level by using the Karolinska sleepiness scale once every five minutes. Statistical analysis was performed to evaluate the potential of HRV indexes to distinguish between alert, first signs of sleepiness and severe sleepiness states. The results suggest that individual subjects show different reactions to sleepiness, which produces an individual change in HRV indicators. The results motivate future work for more personalized approaches in sleepiness detection.

Place, publisher, year, edition, pages
Springer Verlag, 2018
Keywords
Fatigue (human), Detection, Heart beat, Variability, Driver, ECG
National Category
Applied Psychology
Research subject
80 Road: Traffic safety and accidents, 84 Road: Road users
Identifiers
urn:nbn:se:vti:diva-11938 (URN)10.1007/978-981-10-5122-7_38 (DOI)2-s2.0-85021750920 (Scopus ID)9789811051210 (ISBN)
Conference
Joint Conference of the European Medical and Biological Engineering Conference, EMBEC 2017 and Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, NBC 2107, 11 June 2017 through 15 June 2017
Available from: 2017-07-19 Created: 2017-07-19 Last updated: 2018-01-25Bibliographically approved
Ahlström, C., Anund, A., Fors, C. & Åkerstedt, T. (2018). Effects of the road environment on the development of driver sleepiness in young male drivers. Accident Analysis and Prevention, 112, 127-134
Open this publication in new window or tab >>Effects of the road environment on the development of driver sleepiness in young male drivers
2018 (English)In: Accident Analysis and Prevention, ISSN 0001-4575, E-ISSN 1879-2057, Vol. 112, p. 127-134Article in journal (Refereed) Published
Abstract [en]

Latent driver sleepiness may in some cases be masked by for example social interaction, stress and physical activity. This short-term modulation of sleepiness may also result from environmental factors, such as when driving in stimulating environments. The aim of this study is to compare two road environments and investigate how they affect driver sleepiness. Thirty young male drivers participated in a driving simulator experiment where they drove two scenarios: a rural environment with winding roads and low traffic density, and a suburban road with higher traffic density and a more built-up roadside environment. The driving task was essentially the same in both scenarios, i.e. to stay on the road, without much interaction with other road users. A 2 x 2 design, with the conditions rural versus suburban, and daytime (full sleep) versus night-time (sleep deprived), was used. The results show that there were only minor effects of the road environment on subjective and physiological indicators of sleepiness. In contrast, there was an increase in subjective sleepiness, longer blink durations and increased EEG alpha content, both due to time on task and to night-time driving. The two road environments differed both in terms of the demand on driver action and of visual load, and the results indicate that action demand is the more important of the two factors. The notion that driver fatigue should be countered in a more stimulating visual environment such as in the city is thus more likely due to increased task demand rather than to a richer visual scenery. This should be investigated in further studies.

Place, publisher, year, edition, pages
PERGAMON-ELSEVIER SCIENCE LTD, 2018
Keywords
Fatigue (human), Roadside, Stimulation, Attention, Simulator (driving), Impact study, Mental load
National Category
Applied Psychology
Research subject
80 Road: Traffic safety and accidents, 841 Road: Road user behaviour
Identifiers
urn:nbn:se:vti:diva-12812 (URN)10.1016/j.aap.2018.01.012 (DOI)000424963000015 ()29346084 (PubMedID)
Available from: 2018-04-05 Created: 2018-04-05 Last updated: 2018-06-11Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-2061-5817

Search in DiVA

Show all publications