Hastighetsregulator och bränsleförbrukning för tunga lastbilar med släp

Försök med sänkning av maximal inställd hastighet från 89 till 85 km/h

Ulf Hammarström
Mohammad-Reza Yahya
Förord

Linköping mars 2007

Ulf Hammarström

Dnr: 2003/0271-24

VTI notat 32-2006
Kvalitetsgranskning

Quality review
Internal peer review was performed on 2007-01-30 by Mats Wiklund. Ulf Hammarström has made alterations to the final manuscript of the report 2007-02-23. The research director of the project manager Lennart Folkeson examined and approved the report for publication on 2007-02-25.
Innehållsförteckning

Sammanfattning .. 5
Summary ... 7

1 Bakgrund .. 9
2 Syfte .. 13
3 Problembeskrivning .. 14

4 Metod ... 18
4.1 Modellberäkningar ... 18
4.2 Fordon ingående i försöket ... 24
4.3 Sammanställning och kontroll av bränsledata ... 26
4.4 Väderleksdata ... 26
4.5 Analys .. 28

5 Datamaterial ... 30
6 Resultat ... 32
7 Diskussion .. 37

Referenser ... 41

Bilaga 1 Fordonsdata
Bilaga 2 Exempel på protokoll avseende tankning
Bilaga 3 Bränsleförbrukning per bil och månad
Hastighetsregulator och bränsleförbrukning för tunga lastbilar med släp – försök med sänkning av maximal inställd hastighet från 89 till 85 km/h

av Ulf Hammarström och Mohammad-Reza Yahya
VTI
581 95 Linköping

Sammanfattning

Den överenskommelse Vägverket Region Skåne ingått omfattar sex åkerier och totalt 17 bilar. Uppgifter om tankad bränslemängd per månad och mätarställning, både före och efter omställning, finns enbart för 12 bilar tillhörande fem åkerier.

Enligt analysen av mätdata finns en påvisbar ökning av bränsleförbrukningen från föreställning till eftersituationen. Olika analysmetoder ger något olika resultat, men som mest en ökning över 3 %. Den något högre medeltemperaturen i eftersituationen har samtidigt påvisats bidra med en bränslereducerande effekt av 0,3 % jämfört med föreställningen.

Enligt utförda datorsimuleringar framgår att en sänkning av eftersträvad hastighet, genomgående 5 km/h, med avseende på bränsleförbrukning medför:
• att en reduktion i de flesta fallen blir följden
• att den relativa reduktionen minskar med ökande lastfaktor
• att den relativa reduktionen ökar med ökande utgångshastighet
• att bra vägstandard i genomsnitt ger större relativ reduktion än dålig
• att man för dålig vägstandard och full last även kan få en bränsleökning.

Baserat på simuleringarna och uppgifter om trafikarbetets fördelning på olika vägtyper och hastighetsgränser har en förväntad genomsnittlig bränslereduktion mindre än 1 % uppskattats för tung lastbil med släp. En reduktion av bränsleförbrukning bedöms vara vad som kan förväntas om inte andra förutsättningar än hastighetsregulatorns inställning förändras parallellt.

Omställning av hastighetsregulatorn från 89 till 85 km/h har uppskattats medföra en hastighetsreduktion med 1,5 respektive 3,0 km/h på 90-väg respektive motorväg. På övriga vägar, hastighetsgränssn 70 km/h eller lägre, kan ingen reduktion förväntas.

Det finns många olika möjliga förklaringar till att den uppmätta förändringen inte stämmer med den förväntade. En brist i föreliggande studie är att sådana förklaringsvariabler inte registrerats.

Inför eventuella framtida förändringar av hastighetsregulatorers inställning borde man utreda vilka faktorer som kan ha förändrats och speciellt ifråga om dessa kan ha koppling, primärt förarbeteende, till sänkningen av regulatorns inställning.
Summary

Trucks with a gross vehicle weight above 12 tons and of year model 1988 or later shall as from 1992 be equipped with a speed regulator. The Road Administration, Region Skåne, made an agreement with a number of truck companies to set speed regulators with 85 km/h as maximum speed. The truck owners guaranteed that the speed regulators in the previous year were set at 89 km/h. The speed regulators were reset in June 2003.

The agreement between the Road Administration and the truck owning companies included six companies and in all 17 trucks. Data on fuel fillings and odometer readings per month, both before and after the speed regulator resetting, was only available for 12 trucks belonging to five companies.

The data analysis showed an increase in fuel consumption in the after situation. Different methods of analysis give somewhat different results with an increase of more than 3% at the most. The average air temperature in the after situation was somewhat higher than before the speed regulators were reset. The analyses show a temperature effect of 0.3% decrease in fuel consumption, from before to after.

Computer simulations of fuel consumption show that a decrease in speed by 5 km/h will have the following effects on fuel consumption:

- a reduction will be the normal case
- the relative reduction will decrease by decreasing load factor
- the relative reduction will increase by increasing initial speed
- the relative reduction will increase with increasing road standard
- an increase is possible in the case of poor road standard and full load.

Based on computer simulations and mileage distribution on different road types and speed limits an expected fuel consumption reduction of <1% has been estimated. A reduction in fuel consumption is judged to be what one could expect if no other conditions than the setting of the speed regulator are changed.

A reset of the speed regulator from 89 to 85 km/h has been estimated to reduce the average speed by 1.5 and 3.0 km/h for speed limit 90 km/h and for motorway.

There are many possible explanations for the achieved results. A shortcoming of the survey is that explanatory variables not were registered in parallel with fuel and odometer readings.

In the event of future changes in the settings of speed regulators, a study should be carried out to clarify factors that may have changed and especially if they, primarily driving behaviour, might be linked to the changed speed regulator settings.
1 Bakegrund

2 f § Lastbil i kategori N3 som är av 1988 eller senare års modell skall ha hastighetsregulator.

2 g § Lastbil i kategori N2 med en totalvikt över 7 500 kg och som tagits i bruk den 1 januari 2005 eller senare, skall ha hastighetsregulator.

2 h § Lastbil i kategori N2 med en totalvikt över 7 500 kg och som tagits i bruk mellan den 1 oktober 2005 och den 1 januari 2006, och som uppfyller gränsvärdena i direktiv 1999/96/EG (Rad A, Miljöklass 2000, textkod T31CC enligt Vägverkets föreskrifter [VVFS 1993:2] om textkoder), skall ha hastighetsregulator
1. från och med den 1 januari 2006 om lastbilen används frö trafik utanför Sverige, och
2. från och med den 1 januari 2008 om lastbilen används för trafik endast i Sverige.

2 i § Lastbil i kategori N2 med en totalvikt av högst 7 500 kg och som tagits i bruk den 1 januari 2005 eller senare skall ha hastighetsregulator
1. från och med den 1 januari 2005 om lastbilen används för trafik utan Sverige, och
2. från och med den 1 januari 2008 om lastbilen används för trafik endast i Sverige.

2 j § Lastbil i kategori N2 med en totalvikt av högst 7 500 kg och som tagits i bruk mellan den 1 oktober 2001 och den 1 januari 2005, och som uppfyller gränsvärdena i direktiv 1999/96/EG (Rad A, Miljöklass 2000, textkod T31CC enligt Vägverkets föreskrifter [VVFS 1993:2] om textkoder), skall ha hastighetsregulator
1. från och med den 1 januari 2006 om lastbilen används för trafik utanför Sverige, och
2. från och med den 1 januari 2008 om lastbilen används för trafik endast i Sverige.

En och samma lastbil kan omväxlande köras både med och utan släp. Följande max-hastigheter tillåts på svenska vägar:

- för tung lastbil utan släp
 - motorväg eller motortrafikled, 90 km/h eller skyldad hastighetsgräns om denna är lägre
 - övrig väg, max 80 km/h eller skyldad hastighetsgräns om denna är lägre
- för tung lastbil med släp, max. 80 km/h eller skyldad hastighetsgräns om denna är lägre.

Enligt olika mindre försök som genomförts i Skåne med tunga lastbilar ger en sänkning av den maximala hastigheten på hastighetsregulatorn från 89 km/h till 85 km/h en bränslereduktion med 5 % (Persson, 2003).

Det lär förekomma att hastighetsregulatorer till och från sätts ur funktion. För sådana lastbilar skulle kunna förväntas en minst lika stor hastighetsreduktion med inkopplad regulator ställd på 85 km/h som för bilar med inkopplad regulator ställd på 89 km/h i föresituationen.

1 Kategori N3: lastbilar med totalvikt över 3 500 kg men inte över 12 000 kg; kategori N2: lastbilar med totalvikt över 12 000 kg (klassificering av fordon enligt UN-ECE).
En reduktion av maxhastigheten kan utöver bränsleeffekter också förväntas ge effekter avseende följande:

- avgasutsläpp
- däckslitage
- reparationskostnader
- trafiksäkerhet
- restid.

- med hälften av differensen mellan uppmätt medelhastighet och hastighetsgränsen
- med hela differensen dvs. ner till hastighetsgränsen.

Följande eftersträvade hastigheter gällde i olika väg- och trafikmiljöer:

- vägbredd ≤6,5 m och 70 km/h: 76,2 km/h
- vägbredd 9,0 m och 90 km/h: 86,2 km/h
- MV och 110 km/h: 92,9 km/h.

Den högsta tillåtna hastigheten för tungt fordon med släp var i studiens förutsättningar 70 km/h. Följande reduktioner av bränsleförbrukning beräknades:

- 3,5 % med halva hastighetsdifferensen
- 7,6 % med hela hastighetsdifferensen.

Dessa värden motsvarar att angivna förändringar skulle genomföras på hela landsvägs-nätet.

Tabell 1:1 Genomsnittlig reshastighet (km/h) för tunga fordon med släp på det statliga vägnätet, nationellt. *(Vägverket Konsult, 2005.)*

<table>
<thead>
<tr>
<th>Hastighetsgräns</th>
<th>2002</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>67,4+/-1,8</td>
<td>68,5+/-1,6</td>
</tr>
<tr>
<td>90</td>
<td>81,1+/-0,8</td>
<td>81,5+/-0,8</td>
</tr>
<tr>
<td>110</td>
<td>85,2+/-0,9</td>
<td>85,4+/-0,7</td>
</tr>
<tr>
<td>MV**</td>
<td>85,4+/-1,0</td>
<td>85,6+/-0,7</td>
</tr>
</tbody>
</table>

*Intervallen omfattar med 95-procentig säkerhet de sanna medelvärdena; Reshastighet exkl. korsningspassager. Punkthastighet kan uppskattas genom att addera 0,3 km/h till reshastighet. **Samtliga förekommande hastighetsgränser på vägtypen.

Tabell 1:2 Genomsnittlig reshastighet (km/h) för tunga fordon med släp på det statliga vägnätet, Vägverket Region Skåne. *(Vägverket Konsult, 2005.)*

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>66,3+/-3,9</td>
<td>67,2+/-2,0</td>
</tr>
<tr>
<td>90</td>
<td>81,2+/-1,2</td>
<td>80,0+/-1,6</td>
</tr>
<tr>
<td>110</td>
<td>85,7+/-1,0</td>
<td>85,9+/-1,0</td>
</tr>
<tr>
<td>MV**</td>
<td>85,4+/-1,3</td>
<td>85,7+/-1,1</td>
</tr>
</tbody>
</table>

*Intervallen omfattar med 95-procentig säkerhet de sanna medelvärdena; Reshastighet exkl. korsningspassager. Punkthastighet kan uppskattas genom att addera 0,3 km/h till reshastighet. **Samtliga förekommande hastighetsgränser på vägtypen.

I tabell 1:1 och 1:2 redovisas medelhastighet över samtliga vägmiljöer dvs. inte med avgränsning till rak och horisontell väg. Hastigheterna är till viss del ett uttryck för förekomst av hastighetsregulatorer.

I tabell 1:3 redovisas eftersträvade hastigheter på rak och horisontell väg enligt annan studie (Carlsson, 2001).
Tabell 1:3 Eftersträvad hastighet för tunga fordon med släp på rak och horisontell väg.(Carlsson, 2001.)*

<table>
<thead>
<tr>
<th>Typsektion</th>
<th>50 km/h</th>
<th>70 km/h</th>
<th>90 km/h</th>
<th>110 km/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6,5 m</td>
<td>54,9</td>
<td>62,2</td>
<td>78,9</td>
<td>81,2</td>
</tr>
<tr>
<td>7,5 m</td>
<td>54,9</td>
<td>68,7</td>
<td>78,8</td>
<td>82,0</td>
</tr>
<tr>
<td>9 m</td>
<td>54,9</td>
<td>64,4</td>
<td>81,1</td>
<td>80,4</td>
</tr>
<tr>
<td>13 m</td>
<td>54,9</td>
<td>70,8</td>
<td>81,3</td>
<td>82,0</td>
</tr>
<tr>
<td>ML</td>
<td>54,9</td>
<td>73,1</td>
<td>88,3</td>
<td>84,9</td>
</tr>
<tr>
<td>MV</td>
<td>54,9</td>
<td>74,0</td>
<td>87,8</td>
<td>84,9</td>
</tr>
</tbody>
</table>

*I referensen redovisas reshastighet. Denna har gjorts om till punkthastighet genom att addera 0,3 km/h till reshastighet.

Hastigheterna i tabell 1:3 skulle mera generellt kunna förväntas vara ≥ hastigheter i tabell 1:1, eftersom tabell 1:3 är avgränsad till raka horisontaler till skillnad från tabell 1:1. Detta, högre hastighet i tabell 1:3 än i tabell 1:1, är i de flesta fall inte uppfyllt. En förklaring kan vara att tabell 1:3 baseras på mätningar under 1990-talet till skillnad från tabell 1:1.

En hastighetsregulator kan primärt förväntas ha effekt i de vägmiljöer som i tabell 1:3 har högre hastighet än den som hastighetsregulatorn skall ställas in på. Även om medelhastigheten är lägre än inställd hastighet i regulatorn kan en hastighetseffekt finnas som följd av den hastighetsspridning som finns runt medelvärdet.

Vägverket Region Skåne har ingått en överenskommelse med ett antal åkeriägare om att dessa under ett år skall ha en garanterad inkoppling av hastighetsregulatorn på 85 km/h. För det år som föregår sänkningen har ägarna till lastbilarna garanterat att hastighetsregulatorn fungerat som föreskrivet dvs. varit inställd på 89 km/h. Det av Vägverket upplaga försöket motsvarar en före- och efterstudie. VTI anlitades för utvärdering av försöket efter halva provperioden.
2 Syfte
Genom en ändrad inställning av hastighetsregulatorer från 89 till 85 km/h, före-
respektive eftersituation, på en utvald grupp av lastbilar kan en effekt på bränsle-
förbrukning förväntas. Denna förväntade effekt skall utvärderas genom insamling av
bränslestatistik från de utvalda lastbilarna. Statistiken skall analyseras med avseende på
om det finns en påvisbar förändring i bränsleförbrukning mellan före- och eftersitua-
tionen och med avseende på förändringens storlek.\(^2\)

\(^2\) VTI:s uppdrag har utförts mot bakgrund av att ett beslut tidigare var taget om att följa upp
bränsleförbrukning på det sätt som beskrivits i avsnitt 1.
3 Problembeskrivning

Tänkbara problem med att uppskatta och isolera inverkan av en sänkning av hastighetsregulatorns inställning på bränsleförbrukningen är många. Till dessa hör att andra förutsättningar än regulatorns inställning kan förändras parallellt per fordon under en två år lång försöksperiod. En förändring av följande faktorer skulle kunna ha en mer än marginell betydelse för en skillnad i bränsleförbrukningen mellan före- och efter-situationen:

- väderlek
- fordonets bruttovikt (ekipage+last)
- däck med olika rullmotstånd
- däck med olika omkrets
- väg- och trafikmiljö
- bränslekvalitet
- körbeteende inklusive hastighet
- fordonets allmänna tillstånd
- hjälputrustning
 - kylfläkt
 - servoaggregat
 - luftkonditionering.

Väderlek påverkar bränsleförbrukning bl.a. enligt följande:

- ökande vind medför ett i genomsnitt förhöjt luftmotstånd
- ökande lufttemperatur:
 - kan förväntas medföra reducerat luftmotstånd, reducerat rullmotstånd,
 reducerade transmissionsförluster och reducerade kallstarttillägg
 - kan förväntas öka motorarbetet som följd av ökad inkoppling av kylfläkt och
 luftkonditionering
- ökande nederbörd ger ökande rullmotstånd, både ifråga om regn och snö
- ökande andel tid med minusgrader medför en större andel körning i halt väglag.
 Vinterväglag kan förväntas ge lägre hastighet än annat väglag.

Ett fordonets bruttovikt kan förändras som följd av förändrad lastfaktor och förändrad andel körning med släp. Bruttovikten påverkar rullmotstånd och accelerations- och retardationskrafter.

Förekomst av släp kan påverka bränsleförbrukning både genom medelhastigheten i före- och eftersituationen och genom bruttovikt. Medelhastigheten för en och samma eftersträvade hastighet förändras som följd av att tillgänglig motoreffekt inte alltid är tillräcklig för att kunna hålla eftersträvad hastighet i motlut och genom att tillkopplat släp ger lägre hastighetsbegränsning än utan släp. Även om studiens bilar huvudsakligen skall ha kört med släp förekommer alltid viss körning utan släp.
Däck: olika däckfabrikat och däckmodeller har olika rullmotstånd. Utvecklingen går fortlöpande mot däck med lägre rullmotstånd. Ökande hjulomkrets kan förväntas resultera i ett reducerat rullmotstånd men också i en förändring av det systematiska felet i sträckmätning. En förändrad sträckmätning med större hjulomkrets resulterar i kortare uppmätt sträcka vilket i sin tur resulterar i högre specifik förbrukning (l/mil). En förändring av hjulomkrets kan följa av förslitning av däck eller av däckbyte. Genom förslitning av däck följer en risk för ett systematiskt fel, vilket dessutom förändras systematiskt med tiden.

Väg- och trafikmiljö: en med tiden ökande trafik kan förväntas medföra en ökning av antalet trafikinteraktioner om kapaciteten i vägnätet inte ökar minst lika mycket som trafiken.

Genom att eftersträvad hastighet endast sänks för gruppen av försöksfordon kan andelen körning som köledare förväntas öka inom denna grupp. Detta kan förväntas bidra till högre luftmotstånd jämfört med köpositioner längre bak (Hammarström, 2000). En omställning av hastighetsregulatorn kan endast förväntas ge effekt i sådana miljöer där hastigheten är >85 km/h i föresituationen.

Bränsleckvalitet: ett uttryck för bränsleckvalitet är energiinnehåll. En förändring av bränslets energiinnehåll med tiden ger en systematisk förändring av bränsleförbrukning (volym per sträckenhett).

Förändrat körbeteende – hastighet, acceleration/retardation och växling – kan bl.a. vara en följd av:

- byte av förare
- utbildning och kampanjer
- bränslepris
- förändrad omgivning
- förändrad inställning av hastighetsregulator.

Ett byte av förare mellan före- och eftersituationen kan för de enskilda fordonen förväntas ge systematiska hastighetsförändringar. I genomsnitt för ett större antal fordon finns ingen anledning att förvänta någon systematisk hastighetseffekt som följd av förarbyten. En slumpmässig effekt kan förväntas, även om denna minskar med ökande antal fordon. En fråga är om antalet fordon ingående i studien är tillräckligt stort för att inte en slumpmässig effekt i någon riktning skall vara större än en eventuell effekt av ändrad inställning av hastighetsregulator.

Förare av tunga fordon utbildas i eco-driving. En rimlig hypotes är att denna kunskap ökar med tiden, vilket kan medföra systematiskt lägre bränsleförbrukning.

Bränslepriset kan förväntas ha betydelse för bränsleförbrukning. SCB:s prisindex, medelindex, inklusive alla skatter och avgifter har varit följande under försöket:

Minskande pris kan förväntas resultera i ökande förbrukning.
En systematisk förändring av omgivningen med tiden, exempelvis avseende hastighetsnivån för den totala trafiken för tung lastbil med släp per vägkategori kan förväntas påverka framförandet av de i studien deltagande fordonen.

En sänkning av regulatorns inställda maxhastighet skulle kunna ha inverkan på andra faktorer än den absoluta maxhastigheten med motordrivning. Sådana faktorer skulle kunna finnas inom körbeteende:

- förändrad maxhastighet i andra miljöer än i vilka regulatorn sätter gränsen
- förändrad nivå på acceleration och retardation (dV/dT; V: m/sek; T: sek).

En hastighetsregulator begränsar den maximala hastigheten då motorn driver fordonet framåt, däremot inte hastigheten med frikopplad motor. I nerförsbackar, med tillräcklig lutning och längd, kan därmed högre hastighet än den hastighetsregulatorn är inställd på uppnås med frikopplad motor.

En möjlig förändring av maxhastighet, även ökning, gäller för sådana väg- och trafikmiljöer i vilka maxhastigheten i föresituationen <85 km/h.

Genom ökad nivå på \(abs(dV/dT) \) kan medelhastigheten hållas uppe trots sänkt maxhastighet. Möjligheterna till förändrad \(dV/dT \) borde vara störst ifråga om retardation.

Fordonets allmänna tillstånd: gruppen av fordon som ingår i försöket har en systematisk skillnad ifråga om äldre och ackumulerad körsträcka mellan före- och efter-situationen.

Hjälputrustning: en systematisk skillnad ifråga om förekomst eller användning av hjälputrustning skulle ge en systematisk skillnad i bränsleförbrukning. Betydelserna av hjälputrustning, kvoten mellan motorarbete efter och före, kan beskrivas enligt följande:

\[
\frac{PUTR_{85} + f_{85} \cdot V_{85}}{PUTR_{89} + f_{89} \cdot V_{89}} \cdot \frac{t_{85}}{t_{89}}
\]

alternativt

\[
\frac{PUTR_{85}}{V_{85} + f_{85}} / \frac{PUTR_{89}}{V_{89} + f_{89}}
\]

PUTR: effektbehov för hjälputrustning (W)

\(V \): hastighet (m/s)

\(f_i \): kraft för framdrivning inkl. transmissionsförluster men exklusive hjälputrustning (N)

Index 85 respektive 89: betecknar variabelvärden då hastighetsregulatorn är inställd på 85 respektive 89 km/h.

\(t_{85} \): restid för viss sträcka då hastighetsregulatorn är inställd på \(V \) (s).
Om effektuttaget för $PUTR$ är oförändrat mellan före och efter kommer $PUTR$ att verka höjande på kvoten eftersom $PUTR/V_{85}>PUTR/V_{89}$.

För att kunna säkerställa vad en förändrad bränsleförbrukning mellan en före- och efter-situation beror på, krävs att de ovan uppräknade faktorerna registreras under hela försöket. Utan en sådan registrering kan man aldrig vara säker på att en förändrad bränsleförbrukning är en följd av enbart den förändrade maxhastighet som följer av förändrad inställning av hastighetsregulatorn. Ett alternativ till att registrera alla mera viktiga förklaringsvariabler för bränsleförbrukning skulle kunna vara att använda en kontrollgrupp av lastbilar utan omställning av hastighetsregulatorn.
4 Metod

4.1 Modellberäkningar

Med den s.k. VETO-modellen (Hammarström och Karlsson, 1987) har bränsleförbrukning för lastbil med släp beräknats för olika förutsättningar:

- två olika linjeföringsklasser: siktklass 1, den bästa; siktklass 4, den sämsta
- olika lastfaktorer: 0,0; 0,6 och 1,0
- olika eftersträvade hastigheter dvs. den hastighet man försöker hålla på rak väg: 85; 90; 95 och 100 km/h.

Beräkningarna motsvarar landsvägsförhållanden för fordon som inte hindras av andra fordon. Inga korsningseffekter ingår i beräkningarna. Körbeteende i form av ändrad hastighet i nerförslut liksom en eventuell acceleration inför motlut har inte beskrivits. Hastighet i lutningar jämfört med rak horisontell väg påverkas i modellen endast av fordonsprestanda och lutning (motlut). Horisontalkurvor påverkar beräkningarna genom att den eftersträvade hastigheten i horisontalkurvor minskar då kurvraden minskar.

Detta resulterar i retardation längs vägen före och acceleration efter horisontalkurvor.

3 Siktklass används av VV inom vägplaneringen för klassning av både befintlig och planerad väg med avseende på horisontell (Average Degree of Curvature) och vertikal (Rise and Fall) linjeföring. Totalt används fyra klasser. Här använda beskrivningar:

- Siktklass 1: ADC, 7,23 grader/km; RF, 13,1 m/km
- Siktklass 4: ADC, 89,2 grader/km; RF, 19,9 m/km

Fordonsdata: maxeffekt, 330 kW; tvärsnittsarea, 9,9 m²; aerodynamisk formkonstant (Cₐ), 0,66; bruttomassa (kg): 20 480 (lastfaktor: 0,0); 44 480 (lastfaktor: 0,6) och 60 480 (lastfaktor: 1,0).

4 Enligt referens (Lindqvist, 1991) kan VETO:s beskrivning av hastighetsreduktion i horisontalkurvor ge för stor hastighetsreduktion.
Resultatet av beräkningarna har redovisats i figur 4:1 och 4:2 samt i tabell 4:1 och 4:2.

Figur 4:1 Beräknad bränsleförbrukning och medelhastighet för lastbil med släp som funktion av olika eftersträvad hastighet (kurvpunkter: 85; 90; 95 och 100 km/h) och lastfaktorer. Siktklass 1 (”bra” linjeföring).

Figur 4:2 Beräknad bränsleförbrukning och medelhastighet för lastbil med släp som funktion av olika eftersträvad hastighet (kurvpunkter: 85; 90; 95 och 100 km/h) och lastfaktorer. Siktklass 4 (”dålig” linjeföring).
Tabell 4.1 Beräknad bränsleförbrukning och medelhastighet för lastbil med släp som funktion av olika lastfaktorer och eftersträvad hastighet. Siktclass 1 ("bra" linjeföring).

<table>
<thead>
<tr>
<th>Lastfaktor</th>
<th>Bruttovikt (kg)</th>
<th>Hastighet</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Eftersträvad* (km/h)</td>
<td>Medel (km/h)</td>
<td>Bränsle l/10km</td>
</tr>
<tr>
<td>0,0</td>
<td>20 480</td>
<td>90</td>
<td>89,8</td>
<td>3,22</td>
</tr>
<tr>
<td>0,0</td>
<td>20 480</td>
<td>85</td>
<td>84,5</td>
<td>3,07</td>
</tr>
<tr>
<td>0,0</td>
<td>20 480</td>
<td>100</td>
<td>99,7</td>
<td>3,69</td>
</tr>
<tr>
<td>0,0</td>
<td>20 480</td>
<td>95</td>
<td>94,8</td>
<td>3,43</td>
</tr>
<tr>
<td>0,6</td>
<td>44 480</td>
<td>90</td>
<td>83,9</td>
<td>4,52</td>
</tr>
<tr>
<td>0,6</td>
<td>44 480</td>
<td>85</td>
<td>80,1</td>
<td>4,43</td>
</tr>
<tr>
<td>0,6</td>
<td>44 480</td>
<td>100</td>
<td>91,5</td>
<td>4,80</td>
</tr>
<tr>
<td>0,6</td>
<td>44 480</td>
<td>95</td>
<td>87,4</td>
<td>4,70</td>
</tr>
<tr>
<td>1,0</td>
<td>60 480</td>
<td>90</td>
<td>82,4</td>
<td>5,48</td>
</tr>
<tr>
<td>1,0</td>
<td>60 480</td>
<td>85</td>
<td>76,1</td>
<td>5,44</td>
</tr>
<tr>
<td>1,0</td>
<td>60 480</td>
<td>100</td>
<td>90,6</td>
<td>5,68</td>
</tr>
<tr>
<td>1,0</td>
<td>60 480</td>
<td>95</td>
<td>87</td>
<td>5,56</td>
</tr>
</tbody>
</table>

*Den hastighet fordonet försöker hålla på rak väg.
Tabell 4.2 Beräknad bränsleförbrukning och medelhastighet för lastbil med släp som funktion av olika lastfaktorer och eftersträvad hastighet. Siktklass 4 ("dålig" linjeförande).

<table>
<thead>
<tr>
<th>Lastfaktor (kg)</th>
<th>Bruttovikt (kg)</th>
<th>Hastighet (km/h)</th>
<th>Medel (km/h)</th>
<th>Bränsle l/10km</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>20 480</td>
<td>90</td>
<td>83,8</td>
<td>3,80</td>
</tr>
<tr>
<td>0,0</td>
<td>20 480</td>
<td>85</td>
<td>80</td>
<td>3,64</td>
</tr>
<tr>
<td>0,0</td>
<td>20 480</td>
<td>100</td>
<td>91,7</td>
<td>4,07</td>
</tr>
<tr>
<td>0,0</td>
<td>20 480</td>
<td>95</td>
<td>87,6</td>
<td>3,85</td>
</tr>
<tr>
<td>0,6</td>
<td>44 480</td>
<td>90</td>
<td>80,5</td>
<td>5,57</td>
</tr>
<tr>
<td>0,6</td>
<td>44 480</td>
<td>85</td>
<td>77,3</td>
<td>5,55</td>
</tr>
<tr>
<td>0,6</td>
<td>44 480</td>
<td>100</td>
<td>86,9</td>
<td>5,72</td>
</tr>
<tr>
<td>0,6</td>
<td>44 480</td>
<td>95</td>
<td>83,5</td>
<td>5,42</td>
</tr>
<tr>
<td>1,0</td>
<td>60 480</td>
<td>90</td>
<td>77,9</td>
<td>6,68</td>
</tr>
<tr>
<td>1,0</td>
<td>60 480</td>
<td>85</td>
<td>75,1</td>
<td>6,74</td>
</tr>
<tr>
<td>1,0</td>
<td>60 480</td>
<td>100</td>
<td>81</td>
<td>6,88</td>
</tr>
<tr>
<td>1,0</td>
<td>60 480</td>
<td>95</td>
<td>80,8</td>
<td>6,57</td>
</tr>
</tbody>
</table>

*Den hastighet fordonet försöker hålla på rak väg.

Ur tabellerna framgår att en hastighetssänkning, en sänkning av eftersträvad hastighet med 5 km/h, med avseende på bränsleförbrukning medför:

- att en reduktion i allmänhet blir följd
- att den relativa reduktionen minskar med ökande lastfaktor
- att den relativa reduktionen ökar med ökande hastighet
- att siktklass 1 i genomsnitt ger större relativ reduktion än siktklass 4
- att man för siktklass 4 och lastfaktor 1,0 även kan få en bränsleökning.

VTI notat 32-2006
Förändringar i bränsleförbrukning med sänkt eftersträvad hastighet i de utförda VETO-beräkningarna kan förklaras av:

- mera bortbromsad energi i nerförsbackar
- mindre bortbromsad energi i anslutning till horisontalkurvor
- lägre luft- och lägre rullmotstånd som följd av lägre medelhastighet
- oftast lägre verkningsgrad både i motor och i kraftöverföring.

För ett och samma fordon förstärks speciellt den första och andra punkten av ökande bruttvikt och med sämre vägstandard. Sämrere vägstandard motsvaras här av större lutning och mindre horisontalradier. Att mängden bortbromsad energi ökar då reglerns maxhastighet sänks motsvarar inte att förbrukningen i lutningar totalt ökar, däremot att merförbrukning som följd av lutning ökar.

Vad som inte har beaktats i beräkningarna är korsningseffekter, geometri direkt, och effekter av trafikinteraktioner i korsning och på länk. Dessa effekter motsvarar av ”merförbrukning” för hastighetsförändringar. Denna merförbrukning minskar då eftersträvad hastighet minskar. För landsvägsförhållanden bedöms denna effekt vara av mindre betydelse.

Den verkliga skillnaden i eftersträvad hastighet mellan före och efter i det empiriska försöket är inte känd. Vad man vet om den eftersträvade hastigheten, undantaget nerförslut, är följande:

- i föresituationen en hastighet av max 89 km/h
- i eftersituationen en hastighet av max 85 km/h.

En rimlig hypotes är att eftersträvad hastighet för studiens bilar i genomsnitt inte varit högre än eftersträvad hastighet för medelfordon i föresituationen eftersom medelfordonet skall ha en regulator inställd på 89 km/h. Den eftersträvade hastighet som gällt för lastbilarna ingående i studien i föresituationen kan därmed förväntas ha motsvarats av en medelhastighet inte högre än enligt tabell 1:1 och 1:2.

I tabell 4:3a och 4:3b redovisas eftersträvad hastighet och därav följande medelhastighet enligt VETO.
Tabell 4:3a Uppskattad eftersträvad hastighet som funktion av medelhastighet baserad på VETO-beräkningar. Förutsättningar: siktklass 1; lastfaktor 0,6.*

<table>
<thead>
<tr>
<th>Medelhastighet (km/h)</th>
<th>Eftersträvad hastighet i VETO (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>79,3</td>
<td>84</td>
</tr>
<tr>
<td>80,1</td>
<td>85</td>
</tr>
<tr>
<td>80,8</td>
<td>86</td>
</tr>
<tr>
<td>81,6</td>
<td>87</td>
</tr>
<tr>
<td>82,3</td>
<td>88</td>
</tr>
<tr>
<td>83,1</td>
<td>89</td>
</tr>
<tr>
<td>83,8</td>
<td>90</td>
</tr>
<tr>
<td>84,6</td>
<td>91</td>
</tr>
<tr>
<td>85,3</td>
<td>92</td>
</tr>
<tr>
<td>86,1</td>
<td>93</td>
</tr>
</tbody>
</table>

*Ett linjärt samband har uppskattats baserat på tabell 4:1.

Tabell 4:3b Uppskattad eftersträvad hastighet som funktion av medelhastighet baserad på VETO-beräkningar. Förutsättningar: siktklass 4; lastfaktor 0,6.*

<table>
<thead>
<tr>
<th>Medelhastighet (km/h)</th>
<th>Eftersträvad hastighet i VETO (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>74,1</td>
<td>80</td>
</tr>
<tr>
<td>74,7</td>
<td>81</td>
</tr>
<tr>
<td>75,4</td>
<td>82</td>
</tr>
<tr>
<td>76,0</td>
<td>83</td>
</tr>
<tr>
<td>76,6</td>
<td>84</td>
</tr>
<tr>
<td>77,3</td>
<td>85</td>
</tr>
<tr>
<td>77,9</td>
<td>86</td>
</tr>
<tr>
<td>78,6</td>
<td>87</td>
</tr>
<tr>
<td>79,2</td>
<td>88</td>
</tr>
<tr>
<td>79,8</td>
<td>89</td>
</tr>
<tr>
<td>80,5</td>
<td>90</td>
</tr>
<tr>
<td>81,1</td>
<td>91</td>
</tr>
<tr>
<td>81,7</td>
<td>92</td>
</tr>
</tbody>
</table>

*Ett linjärt samband har uppskattats baserat på tabell 4:2.

En och samma medelhastighet förutsätter högre eftersträvad hastighet i siktklass 4 än i siktklass 1. Andelen trafikarbete i siktklass 4 och med tillräckligt hög medelhastighet för att hastighetsregulatörn skall kunna ha effekt bedöms vara liten.
På vägar med hastighetsgräns 70 km/h gäller enligt tabell 1:1 och 1:2 en medelhastighet av ca 68 km/h. Denna medelhastighet bedöms enligt tabell 4:3a och 4:3b motsvara en lägre eftersträvad hastighet än 85 km/h dvs. ingen direkt regulatoröverfekt kan förväntas.

Effekter av en sänkning av hastighetsregulatorns inställning kan förväntas i miljöer med eftersträvad hastighet >85 km/h.

För vägar i siktklass 1 bedöms, baserat på tabell 1:1 och 4:3a, den eftersträvade hastigheten för studiens bilar justerad för regulatorns inställning i före- och eftersituationen till följande:

- <85 km/h för hastighetsgräns 70 km/h
- 87 respektive 85 km/h för hastighetsgräns 90 km/h
- 89 respektive 85 km/h för hastighetsgräns 110 km/h
- 89 respektive 85 km/h för motorväg.

I praktiken kan därmed en sänkning av eftersträvad hastighet med 4 km/h endast förväntas på motorväg och vägar med 110 km/h. På 90-vägar kan en reduktion av eftersträvad hastighet med 2 km/h förväntas. Detta motsvarar en reduktion av 1,5 km/h respektive 3,0 km/h på 90-väg respektive motorväg och 110-väg.

Slutatsen av genomförda VETO-simuleringar är bl.a. att bränsleförbrukningen i genom- snitt kan förväntas minska med lägre eftersträvad resulterande hastighet men att det inte är helt uteslutet att effekten för enskilda fordon under speciella förhållanden skulle kunna bli den motsatta.

4.2 Fordon ingående i försöket

Den överenskommelse Vägverket Region Skåne ingått, omfattar sex åkerier och totalt 17 bilar enligt tabell 4:4. I tabellen redovisas också datum för omställning av hastighets- regulatorn per bil. En mera detaljerad teknisk beskrivning av varje bil ges i bilaga 1.
Tabell 4:4 Åkerier och bilar som har ingått i försöket med sänkt hastighetsregulator.

<table>
<thead>
<tr>
<th>Äkeri</th>
<th>Reg nr</th>
<th>Omställning*</th>
<th>Diverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kämpafrakt AB (GKF)</td>
<td>RXL 073</td>
<td></td>
<td>Sanitetsporslin</td>
</tr>
<tr>
<td>Jimmie Nilssons Åkeri (GKF)</td>
<td>SSC277</td>
<td></td>
<td>Kött (Swedish Meat)</td>
</tr>
<tr>
<td>Glimåkra Åkeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWO 097</td>
<td>0305</td>
<td>Livsmedel mejerivaror; förarstöd; linje; 3 förare;</td>
<td></td>
</tr>
<tr>
<td>SEW 172</td>
<td>0305</td>
<td>Livsmedel mejeri; linje; förarstöd; 3 förare; 95 % släp; tekn problemsep-okt 2003;</td>
<td></td>
</tr>
<tr>
<td>TLA 662</td>
<td>0305</td>
<td>Livsmedel mejeri; linje; 2 förare;</td>
<td></td>
</tr>
<tr>
<td>Christer Nilssons Åkeri AB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOD 872</td>
<td>030424</td>
<td>Hus o. bodar; uppgift om fyllnadsgrad; förarstöd; kör i hela Sverige; 1 förare;</td>
<td></td>
</tr>
<tr>
<td>DLY 529</td>
<td>030509</td>
<td>Hus o. bodar; uppg. om fyllnadsgrad; hela Sverige; 1 förare; förarstöd;</td>
<td></td>
</tr>
<tr>
<td>Transportledet Sverige AB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSB 991</td>
<td>030528</td>
<td>Styckegods; varierande fyllnadsgrad; linje; 4 förare;</td>
<td></td>
</tr>
<tr>
<td>DSC 591</td>
<td>030521</td>
<td>Styckegods; linje; 4 förare;</td>
<td></td>
</tr>
<tr>
<td>ATL 351</td>
<td>030520</td>
<td>Styckegods; linje; 4 förare;</td>
<td></td>
</tr>
<tr>
<td>HTJ 779</td>
<td>030527</td>
<td>Styckegods; linje; 4 förare;</td>
<td></td>
</tr>
<tr>
<td>SUS 907</td>
<td>030514</td>
<td>Styckegods; linje; 2,5 förare;</td>
<td></td>
</tr>
<tr>
<td>TPS397</td>
<td>030604</td>
<td>Styckegods; linje; 2,5 förare;</td>
<td></td>
</tr>
<tr>
<td>CA Åkeri (Malmö LBC)**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TKO 847</td>
<td>0305</td>
<td>Livsmedel; linje; 2 förare;</td>
<td></td>
</tr>
<tr>
<td>RLL 574</td>
<td>0305</td>
<td>Dricka; linje; 2 förare;</td>
<td></td>
</tr>
<tr>
<td>KHW 572</td>
<td>0305</td>
<td>Styckegods o. grönsaker; linje; 2 förare;</td>
<td></td>
</tr>
<tr>
<td>SXS 508</td>
<td>0305</td>
<td>Styckegods; arbetsuttag; linje; 2 förare;</td>
<td></td>
</tr>
</tbody>
</table>

*Av hastighetsregulator från 89 till 85 km/h.**Generellt, dieseldrivna hjälpaggretat.

VTI notat 32-2006 25
I tabell 4:5 redovisas genomsnittliga fordonsegenskaper per åkeri.

Tabell 4:5 Medelvärden av fordonsegenskaper för lastbilar per åkeri.

<table>
<thead>
<tr>
<th>Åkeri</th>
<th>Årsmodell</th>
<th>Motor (kW)</th>
<th>Totalvikt</th>
<th>Maxlast</th>
<th>Antal bilar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kämpafrakt AB</td>
<td>2001</td>
<td>390</td>
<td>27 000</td>
<td>13 630</td>
<td>1</td>
</tr>
<tr>
<td>Jimmie Nilssons Åkeri</td>
<td>2002</td>
<td>353</td>
<td>26 000</td>
<td>11 890</td>
<td>1</td>
</tr>
<tr>
<td>Glimåkra Åkeri</td>
<td>2001</td>
<td>309</td>
<td>26 333</td>
<td>16 517</td>
<td>3</td>
</tr>
<tr>
<td>Christer Nilssons Åkeri AB</td>
<td>1999</td>
<td>328</td>
<td>26 050</td>
<td>14 445</td>
<td>2</td>
</tr>
<tr>
<td>Transportledet Sverige AB</td>
<td>1999</td>
<td>299</td>
<td>26 667</td>
<td>16 365</td>
<td>6</td>
</tr>
<tr>
<td>CA Åkeri (Malmö LBC)</td>
<td>2001</td>
<td>346</td>
<td>28 920</td>
<td>14 680</td>
<td>4</td>
</tr>
</tbody>
</table>

4.3 **Sammanställning och kontroll av bränsledata**

Med bränsledata avses här både bränslemängd och mätarställning vid tankning.

VTI har utvecklat ett kalkylblad i Excel för sammanställning av uppgifter om mätaravläsningar och tankningar, se bilaga 2 och bilaga 3. Bladet innehåller dessutom ett antal rimlighetskontroller av inmatad data. Som resultat får:

- **varningar för tveksamma data**
- **beräknad förbrukning mellan tankningar**
- **beräknad förbrukning per månad.**

För att ta fram månadsstatistik inklusive liter/mil för månaden krävs utöver data för aktuell månad också mätarställning från sista tankningen föregående månad.

I vissa fall har data endast lämnats på formen ”l/mil” och månad. Dessa värden har då förts in direkt i kalkylbladens resultatkolumner. Några åkerier har lagt in data direkt i formuläret medan andra haft egna formulär. I det senare fallet har data förts över till formulären i föreliggande studie. I bilaga 2 redovisas ett exempel på tankningsdata från ett åkeri för en månad. Samma exempel ingår dessutom i det av VTI framtagna kalkylbladet.

4.4 **Väderleksdata**

Bränsleförbrukning påverkas av väderleksförhållanden. Uppföljande mätningar av väderleksdata finns tillgängliga genom offentlig statistik. Sådana mätdata, nederbörd och lufttemperatur, har sammanställts från mätstationer i södra Sverige upp till en nordlig begränsning i höjd med Karlstad och Uppsala, se (SMHI, 2004). För dessa mätstationer har genomsnittlig temperatur och nederbörd per månad respektive kvartal beräknats. Bränsleförbrukning per bil och månad har relaterats till: lufttemperatur och nederbörd per månad alternativt kvartal.
Tabell 4:6 Väderleksdata för södra Sverige under provperioden (SMHI, 2004).*

<table>
<thead>
<tr>
<th>År</th>
<th>Månad</th>
<th>Luft °C</th>
<th>Nederbörd** mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>maj</td>
<td>13,0</td>
<td>69,5</td>
</tr>
<tr>
<td>2002</td>
<td>jun</td>
<td>16,1</td>
<td>96,8</td>
</tr>
<tr>
<td>2002</td>
<td>jul</td>
<td>17,8</td>
<td>74,0</td>
</tr>
<tr>
<td>2002</td>
<td>aug</td>
<td>19,7</td>
<td>40,3</td>
</tr>
<tr>
<td>2002</td>
<td>sep</td>
<td>13,8</td>
<td>14,8</td>
</tr>
<tr>
<td>2002</td>
<td>okt</td>
<td>6,1</td>
<td>106,3</td>
</tr>
<tr>
<td>2002</td>
<td>nov</td>
<td>3,2</td>
<td>68,3</td>
</tr>
<tr>
<td>2002</td>
<td>dec</td>
<td>-1,4</td>
<td>36,3</td>
</tr>
<tr>
<td>2003</td>
<td>jan</td>
<td>-1,3</td>
<td>40,5</td>
</tr>
<tr>
<td>2003</td>
<td>feb</td>
<td>-2,7</td>
<td>8,5</td>
</tr>
<tr>
<td>2003</td>
<td>mar</td>
<td>3,0</td>
<td>9,5</td>
</tr>
<tr>
<td>2003</td>
<td>apr</td>
<td>6,2</td>
<td>48,3</td>
</tr>
<tr>
<td>2003</td>
<td>Maj</td>
<td>12,1</td>
<td>62,0</td>
</tr>
<tr>
<td>2003</td>
<td>jun</td>
<td>16,1</td>
<td>59,0</td>
</tr>
<tr>
<td>2003</td>
<td>jul</td>
<td>18,8</td>
<td>72,0</td>
</tr>
<tr>
<td>2003</td>
<td>aug</td>
<td>17,8</td>
<td>57,3</td>
</tr>
<tr>
<td>2003</td>
<td>sep</td>
<td>13,9</td>
<td>38,0</td>
</tr>
<tr>
<td>2003</td>
<td>okt</td>
<td>5,5</td>
<td>42,3</td>
</tr>
<tr>
<td>2003</td>
<td>nov</td>
<td>6,0</td>
<td>59,5</td>
</tr>
<tr>
<td>2003</td>
<td>dec</td>
<td>3,1</td>
<td>58,0</td>
</tr>
<tr>
<td>2004</td>
<td>jan</td>
<td>-2,6</td>
<td>67,8</td>
</tr>
<tr>
<td>2004</td>
<td>feb</td>
<td>0,6</td>
<td>32,3</td>
</tr>
<tr>
<td>2004</td>
<td>mar</td>
<td>3,1</td>
<td>48,8</td>
</tr>
<tr>
<td>2004</td>
<td>apr</td>
<td>7,6</td>
<td>26,3</td>
</tr>
<tr>
<td>2004</td>
<td>maj</td>
<td>11,5</td>
<td>25,5</td>
</tr>
<tr>
<td>2004</td>
<td>jun</td>
<td>13,7</td>
<td>84,3</td>
</tr>
<tr>
<td>2004</td>
<td>jul</td>
<td>15,3</td>
<td>120,3</td>
</tr>
<tr>
<td>2004</td>
<td>aug</td>
<td>17,6</td>
<td>69,0</td>
</tr>
<tr>
<td>2004</td>
<td>sep</td>
<td>13,4</td>
<td>43,8</td>
</tr>
<tr>
<td>2004</td>
<td>okt</td>
<td>8,7</td>
<td>79,5</td>
</tr>
<tr>
<td>Medel 02-05–03-04</td>
<td>7,8</td>
<td>51,1</td>
<td></td>
</tr>
<tr>
<td>Medel 03-05–04-04</td>
<td>8,5</td>
<td>51,9</td>
<td></td>
</tr>
</tbody>
</table>

*Södra Sverige: upp till en nordlig begränsning i höjd med Karlstad och Uppsala; **Smält form; **Månad för omställning med några undantag.
Utöver medelvärden kan man i tabell 4:6 lägga märke till att det i föresituationen finns tre månader med minusgrader till skillnad från eftersituationen med en månad. Förekomst av minusgrader motsvarar möjlighet till förekomst av snöväglag och nedsatt friktion. Detta kan förväntas bidra till både lägre hastighet och mindre abs(dV/dT).

Beroende på databortfall och på olika tidpunkter för omställning av hastighetsregulatorn per bil stämmer inte angivna medeltemperaturer enligt tabell 4:6 helt med medelvärden för den del av datamaterialet som använts för analys.

4.5 Analys

Den statistiska analysen omfattar följande frågor avseende samband med förändring av hastighetsregulatorn:s inställning:

- om det finns en påvisbar bränsleeffekt?
- hur stor är en påvisad bränsleeffekt?

Två typer av analyser har genomförts:

- parvisa jämförelser motsvarande före respektive efter omställning av hastighetsregulator
- modellanpassning, dvs. bränsleförbrukning som funktion av lufttemperatur, av nederbörd, av en indikator för 89 eller 85 km/h och motoreffekt.

Data för analys:

- parvisa jämförelser: genomsnittlig sträckspecific förbrukning per bil och månad
- funktionsanpassning: motoreffekt; genomsnittlig sträckspecific förbrukning per bil och månad; 0/1-variabel för före och efter samt lufttemperatur och nederbörd per månad.

Parvisa jämförelser har genomförts på data-par representerande månadsförbrukning före respektive efter omställning av hastighetsregulator. Ett par utgörs alltid av bränsleförbrukning för samma kalendermånad före och efter omställning.

Nollhypotesen som har testats är att det inte är någon skillnad i bränsleförbrukning mellan före och efter omställning.

I de parvisa analyserna har två typer av test utförts:

- ett baserat på t-fördelning
- ett icke-parametriskt test (Wilcoxon).

Parvisa analyser har utförts både med och utan viktning mot total förbrukning per bil och månad. Parvisa analyser har genomförts både som enkel- och dubbelsidiga.
Analyser baserade på modellanpassning har utförts enligt följande funktionsansats:

\[
Bf = (b_0 + b_1 * P) * (1 + b_2 * T) * (1 + b_3 * N) * (1 + b_4 * IND) \ldots (l/mil)
\]

b₀, b₁, b₂, b₃ och b₄: sökta parametervärdet

Bf: bränsleförbrukning (l/mil)

P: maximal motoreffekt (kW) enligt bilregistret

T: lufttemperatur (ºC)

N: nederbörd (mm/månad)

IND: 0/1-variabel, som antar värdet 1 efter sänkning av hastighetsregulator och värdet 0 i övriga fall.

Ytterligare en funktionsansats har testats i vilken faktorerna innehållande \(T \) och \(N \) ersatts med månadsvariabler dvs. 0/1-variabler per kalendermånad. Med månadsvariabler erhölls sämre resultat än enligt ansatsen ovan. Den följande redovisningen har avgränsats till en ansats enligt ovan. Förklaringsvariabeln motoreffekt (\(P \)) kan indirekt förväntas fånga upp fordonets bruttovikt dvs. man kan förvänta att ökande motoreffekt är ett uttryck för ökande andel körning med släp och ökande lastfaktor. Ökande lufttemperatur kan förväntas minska rullmotståndet; minska luftmotståndet samt påverka motorns verkningsgrad. Ökande nederbörd kan förväntas öka rullmotståndet. Variabeln \(IND \) är ett uttryck för hastighet. Ökande hastighet ger högre färdmotstånd och därmed normalt ökande bränsleförbrukning. Funktionsanpassning har utförts mot olika delmängder av det totala datamaterialet:

- hela materialet (A)
- enbart bilar med data både i före- och eftersituationen (B)
- föregående punkt reducerad med samtliga data från åkeriet Transportledet (C).

Motivet för en analys utan Transportledet är att dessa data ej kunnat kontrolleras av VTI på motsvarande sätt som data från övriga åkerier.

Slutsatser baserade på utförda statistiska analyser är genomgående på 5%-nivån.

5 Datamaterial

Data har levererats från åkerierna på två alternativa former:

- tankade volymer med tillhörande mätaravläsningar
- sträckspecifik förbrukning (l/mil) per månad och bil.

För följande bilar har förbrukning rapporterats på formen ”l/mil” och månad:

ATL 351; DSB 991; DSC 591; HTJ 779; SUS 907 och TPS 397

Samtliga dessa bilar ingår i Transpordledet Sverige AB. Genom att basdata för dessa bilar inte kunnat granskas på motsvarande sätt som för övriga bilar skulle detta kunna ha bidragit till en systematisk skillnad.

Varje månad per bil ingående i försöket har klassats som före respektive efter omställning. Den månad under vilken omställning har gjorts har klassats enligt följande:

- om datum finns för omställning så efter hur stor andel av dagarna som varit med omställning. Överväger denna andel så välj att klasa månaden som ”efters”, annars som ”före”
- om endast månadsangivelse för omställning, så har hela månaden klassats som efter.

En observation i analyserna utgörs av genomsnittlig förbrukning (l/mil) för en bil under en månad.

Användbara data i föresituationen har inte funnits tillgängliga från CA Åkeri och för en av Transportledets bilar. Bilar utan data både i före- och eftersituationen ger inget informationsbidrag om bränsleeffekten av omställning av hastighetsregulatorn.

För parvisa jämförelser har det totala tillgängliga antalet observationer uppgått till:

- 2x94 inklusive extremvärden
- 2x89 exklusive extremvärden.

För analys med viktning, förutsätter tillgång till total förbrukning per månad, har 2x49observationer funnits tillgängliga för analys. I denna datamängd har inga data bedömts som extrema.

Vid skattning av parametrarna i den ansatta funktionen har samtliga observationer, inklusive extremvärden, utnyttjats. Totalt har då 338 observationer, 111 före och 227 efter, kunnat användas för analys.

Extremvärden ingår i data också efter den första kontrollen i det framtagna Excelkalkylbladet. Någon klar definition av extremvärden har inte funnits utan detta är vad som per bil inom studien bedömts ”extremt”. Ur statistisk synvinkel skall, så länge inte felaktiga data kan urskiljas, samtliga värden ingå i den statistiska analysen. En analys exklusive extremvärden kan här betraktas som någon form av känslighetsanalys.

Den genomsnittliga lufttemperaturen för månader som omfattas av de 2x49 observationerna har varit:

- 5,6ºC under föremätning
- 6,3ºC under eftermätning.
I bilaga 3 redovisas specifik förbrukning för samtliga bilar och månader med tillgängliga data.

I figur 5:1 redovisas tillgängliga bränsledata, 338 observationer, och hur dessa varierar över samtliga månader med tillgängliga data.

Figur 5:1 Bränsleförbrukning (l/mil) per bil och månad.
6 Resultat

I bilaga 3 redovisas bränsleförbrukningen per bil och månad i diagramform.

I tabell 6:1 redovisas resultat av statistiska test under viktning. Två test har utnyttjats, t-test och Wilcoxon-test.

<table>
<thead>
<tr>
<th></th>
<th>Med extremvärden*</th>
<th>Utan extremvärden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bränsleförbrukning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l/mil)</td>
<td>4,31</td>
<td>4,47 (+3,7 %)</td>
</tr>
<tr>
<td>Antal</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>observationer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signifikant</td>
<td>Ja (förkasta H_0)**</td>
<td>Nej (acceptera H_0)**</td>
</tr>
<tr>
<td>skillnad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilcoxon-test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signifikant</td>
<td>Ja (förkasta H_0)**</td>
<td>Nej (acceptera H_0)**</td>
</tr>
<tr>
<td>skillnad</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Kvarvarande extremvärden efter första rimlighetskontroll av basdata.

**H_0: ingen skillnad mellan före och efter; Ett enkelsidigt test med H_0 bränsleförbrukning före≥efter ger samma utfall som den dubbelsidiga hypotesen ("ingen skillnad").

Enligt tabell 6:1 finns, med extremvärden, en påvisbar ökning av bränsleförbrukningen för båda testmetoderna. Utan extremvärden finns ingen påvisbar förändring även om utfallet fortfarande är en ökning.

Slutsats: sänkningen av hastighetsregulatorns inställning har resulterat i en påvisbar ökning av bränsleförbrukningen. Effekten är känslig för förekomst av extremvärden.

I tabell 6:2a redovisas resultat av statistiska analyser per bil.
Tabell 6:2a Resultat av parvisa, före och efter omställning av hastighetsregulator, jämförelser av bränsleförbrukning (l/mil) per bil. Metod: t-test.

<table>
<thead>
<tr>
<th>Bil</th>
<th>Med extremvärden</th>
<th>Utan extremvärden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Före</td>
<td>Efter</td>
</tr>
<tr>
<td>RXL 073</td>
<td>4,20</td>
<td>4,47</td>
</tr>
<tr>
<td>SSC 277</td>
<td>4,54</td>
<td>4,60</td>
</tr>
<tr>
<td>RWO 097</td>
<td>4,14</td>
<td>4,23</td>
</tr>
<tr>
<td>SEW 172</td>
<td>4,13</td>
<td>4,31</td>
</tr>
<tr>
<td>TLA 662</td>
<td>4,84</td>
<td>4,43</td>
</tr>
<tr>
<td>SOD 872</td>
<td>4,23</td>
<td>4,22</td>
</tr>
<tr>
<td>DLY 529</td>
<td>4,29</td>
<td>4,25</td>
</tr>
<tr>
<td>DSB 991</td>
<td>4,45</td>
<td>5,13</td>
</tr>
<tr>
<td>DSC 591</td>
<td>4,09</td>
<td>4,05</td>
</tr>
<tr>
<td>ATL 351</td>
<td>4,48</td>
<td>4,74</td>
</tr>
<tr>
<td>HTJ 779</td>
<td>4,41</td>
<td>4,59</td>
</tr>
<tr>
<td>SUS 907</td>
<td>3,93</td>
<td>4,25</td>
</tr>
<tr>
<td>TPS 397</td>
<td></td>
<td>4,42</td>
</tr>
<tr>
<td>TKO 847</td>
<td></td>
<td>4,52</td>
</tr>
<tr>
<td>RLL 574</td>
<td></td>
<td>4,79</td>
</tr>
<tr>
<td>KHW 572</td>
<td></td>
<td>4,59</td>
</tr>
<tr>
<td>SXS 508</td>
<td></td>
<td>4,27</td>
</tr>
</tbody>
</table>

I tabell 6:2b redovisas beräknade relativa förändringar per bil och åkeri.
Tabell 6:2b Kvoten mellan bränsleförbrukning efter och före omställning av hastighetsregulator.*

<table>
<thead>
<tr>
<th>Bil</th>
<th>Med extremvärden</th>
<th>Utan extremvärden</th>
</tr>
</thead>
<tbody>
<tr>
<td>RXL 073</td>
<td>1,064</td>
<td>1,033</td>
</tr>
<tr>
<td>SSC 277</td>
<td>1,013</td>
<td>1,004</td>
</tr>
<tr>
<td>RWO 097</td>
<td>1,022</td>
<td>1,022</td>
</tr>
<tr>
<td>SEW 172</td>
<td>1,044</td>
<td>1,044</td>
</tr>
<tr>
<td>TLA 662</td>
<td>0,915</td>
<td>0,915</td>
</tr>
<tr>
<td>Medel</td>
<td>0,994</td>
<td>0,994</td>
</tr>
<tr>
<td>SOD 872</td>
<td>0,998</td>
<td>0,998</td>
</tr>
<tr>
<td>DLY 529</td>
<td>0,991</td>
<td>0,991</td>
</tr>
<tr>
<td>Medel</td>
<td>0,994</td>
<td>0,994</td>
</tr>
<tr>
<td>DSB 991</td>
<td>1,153</td>
<td>1,082</td>
</tr>
<tr>
<td>DSC 591</td>
<td>0,990</td>
<td>0,990</td>
</tr>
<tr>
<td>ATL 351</td>
<td>1,058</td>
<td>0,998</td>
</tr>
<tr>
<td>HTJ 779</td>
<td>1,041</td>
<td>1,018</td>
</tr>
<tr>
<td>SUS 907</td>
<td>1,081</td>
<td>1,081</td>
</tr>
<tr>
<td>Medel</td>
<td>1,065</td>
<td>1,034</td>
</tr>
<tr>
<td>Totalt medel</td>
<td>1,031</td>
<td>1,016</td>
</tr>
<tr>
<td>Exkl. Transportledet</td>
<td>1,007</td>
<td>1,001</td>
</tr>
</tbody>
</table>

*Fetstil: påvisbar effekt.

Kommentarer till tabell 6:2a och 6:2b:
- Parvisa data finns för 12 bilar
- För 9 av de 12 bilarna finns ingen påvisbar skillnad mellan före och efter
- Av de totalt tre statistiskt påvisade förändringarna utgör två ökningar
- Av de 12 bilarna med data både i före- och eftersituationen har 4 bilar mindre förbrukning i efter- än i föresituationen
- Två av åkerierna, Glimåkra Åkeri AB och Christer Nilssons Åkeri AB, har på åkerinivå genomsnittliga reduktioner. De genomsnittliga reduktionerna är för båda åkerierna 0,6 %
- För ett av åkerierna, Christer Nilssons Åkeri AB, med totalt två bilar har båda lägre förbrukning efter än före.
En trendanalys ger för ökande motoreffekt att kvoten mellan bränsleförbrukning efter och före minskar totalt och ökar exklusive Transportledet.

Bakgrunden till att redovisar utan Transportledet som ett alternativ är åter att detta underlag inte kunnat kvalitetsgranskas i motsvarande utsträckning som övrigt underlag.

Tabell 6:3 Statistisk analys, t-test inklusive extremvärden, utan respektive med viktning mot total förbrukning per månad och bil.*

<table>
<thead>
<tr>
<th>Mått</th>
<th>Utan viktning</th>
<th>Med viktning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Före</td>
<td>Efter</td>
</tr>
<tr>
<td>l/mil</td>
<td>4,332</td>
<td>4,327 (-0,12 %)</td>
</tr>
<tr>
<td>Antal observationer</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>Signifikant skillnad</td>
<td>Nej (acceptera H₀)</td>
<td>Nej (acceptera H₀)</td>
</tr>
</tbody>
</table>

*Eftersom viktningen baseras på tankad bränslemängd per månad så ingår inte Transportledet.

Enligt tabell 6:3 finns inga påvisbara skillnader mellan före- och eftersituationen. Följande förändringar från före till efter finns i det empiriska underlaget:

- utan viktning, -0,12 %
- med viktning, 0,35 %.

Slutsats: med eller utan viktning ger ingen skillnad avseende påvisbara effekter, även om tendensen är att viktning skulle kunna förstärka ett resultat med högre bränsleförbrukning i efter- än i föresituationen.

De utförda funktionsanpassningarna mot mätdata har resulterat i olika antal påvisbara regressionskoefficienter för motoreffekt, lufttemperatur och nedsättning av hastighetsregulator beroende av vilken delmängd av data som analys utförts inom, se tabell 6:4.

Tabell 6:4 Statistisk analys, funktionsanpassning.

<table>
<thead>
<tr>
<th>Data</th>
<th>Antal obs.</th>
<th>Funktion*</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hela materialet(A)</td>
<td>338</td>
<td>(3,924+0,00156P)(1-0,00388T)(1+0,0264*IND)</td>
<td>0,118</td>
</tr>
<tr>
<td>Både före och efter per månad (B)</td>
<td>266</td>
<td>(4,062+0,00112P)(1-0,00381T)(1+0,0164*IND)</td>
<td>0,107</td>
</tr>
<tr>
<td>(B) exkl. Transportledet (C)</td>
<td>145</td>
<td>(3,667+0,00228P)(1-0,00305T)(1+0,00174*IND)</td>
<td>0,177</td>
</tr>
</tbody>
</table>

*Nederbörd, som ingick i ursprunglig funktionsansats, har inte givit någon påvisbar effekt; Fetstil: parametervärde påvisbart skilt från 0; T: lufttemperatur (ºC); P: motoreffekt (kW); IND: 0/1-indikator, som antar värdet 1 efter sänkning av hastighetsregulator och värdet 0 i övriga fall.
Ur tabell 6:4 framgår bl.a. följande:

- att en temperatureffekt (T) kunnat påvisas generellt
- att en effekt av motorstyrka (P) kunnat påvisas för datamängd (A) och (C)
- att en effekt av hastighetsregulator (IND) kunnat påvisas för datamängd (A).

Någon effekt av nederbörd har inte kunnat påvisas för datamängderna (A), (B) eller (C) varför den i tabell 6:4 redovisade funktionen är exklusive nederbördsfaktorn.

I figur 6:1 redovisas en jämförelse mellan observerade, x-axeln, och modellberäknade, y-axeln, bränslevärden.

Med den skattade modellen inom hela materialet (A) har effekten av sänkt hastighetsregulator för lika temperaturförhållanden uppskattats till en ökning av bränsleförbrukningen med 2,6 %.

Enligt modellen har temperaturskillnaden mellan före- och eftersituation, 5,6 respektive 6,3ºC, bidragit till en bränslereducerande effekt av 0,3 %. Därmed skulle en större ökning i observerad bränsleförbrukning kunnat förväntas om temperaturen i före- och eftersituationen varit lika.

Om temperaturen ökar från 10 till 20ºC minskar bränsleförbrukningen enligt modellen med 4 %.

Ytterligare analyser med funktionsanpassning omfattande månader alternativt årstider har också utförts. Dessa analyser har inte givit några meningsfulla resultat.

Slutsats: Den i funktionsanpassningen påvisade temperatureffekten innebär att skillnaden i bränsleförbrukning mellan före och efter omställning av hastighetsregulator skulle kunnat ha blivit större om medeltemperaturen i före- och eftersituationen varit lika.
7 Diskussion

Bränsleförbrukningen under perioden med hastighetsregulatorn inställd på max 85 km/h, eftersituationen, har i genomsnitt varit högre än i föreperioden med max 89 km/h.

De utförda statistiska analyserna av bränsleförbrukning kan kommenteras enligt följande:

- Med extremvärden finns en påvisbar ökning men inte utan extremvärden
- Någon skillnad mellan med och utan viktning har inte kunnat påvisas, se tabell 6:3
- En temperatureffekt har kunnat påvisas vilken för en temperaturförändring från 5,6 till 6,3°C, medel under före- till eftersituation, ger en bränslereduktion av 0,3 %
- Trots en på bränsleförbrukningen sänkande temperatureffekt från före- till efter-situationen har det resulterande utfallet blivit en påvisbar bränsleökning.

En sänkning av inställningen av hastighetsregulatorn behöver inte innebära att fordonets maxhastighet minskar generellt i alla vägmiljöer med hastighet >85 km/h utan enbart i miljöer med samtidig motordrivning. I nerförsbackar med frikopplad motor kan högre hastighet än hastighetsregulatororns maximala uppnås. I vägmiljöer med hastighet <85 km/h kan ingen hastighetsreduktion förväntas. En hastighetsökning är också möjlig på dessa vägar.

- inom hela det parvisa materialet en trend, ej signifikant, mot avtagande bränslekvot efter/före
- inom det parvisa materialet exklusive Transportledet en trend, ej signifikant, mot ökande bränslekvot efter/före.

Att något samband inte kunnat påvisas mellan bränslekvoten och motoreffekt skulle kunna tolkas som att det finns ett starkt samband mellan motoreffekt och genomsnittlig bruttovikt dvs. effekt/massa-talet förhållandevis konstant. Trenden inom hela det parvisa materialet med avtagande kvot efter/före stämmer med hypotesen om att kvoten skall avta med ökande effekt/massa-tal.

På åkerinivå gäller följande mellan kvoten efter/före och maxeffekt:

- att den största kvoten gäller för åkeriet (Transportledet) med lägst genomsnittlig motoreffekt 299 kW (6 bilar)
• att den minsta kvoten gäller för ett åkeri (Glimåkra) med en genomsnittlig motoreffekt av 309 kW (3 bilar).

På åkerinivå ligger de genomsnittliga motoreffekterna i intervallet: 299 (6 bilar)–390 (1 bil) kW.

En brist i den genomförda studien är att uppgifter om hastighet för studiens bilar saknas. Baserat på resultaten från Vägverkets uppföljande hastighetsmätningar och VETO-simuleringar har slutsatser dragits om de resulterande eftersträvade hastigheterna på olika vägar, se avsnitt 4.1.

Tabell 7:1 Trafikarbets fördelning på olika vägarter för tung lastbil med släp.

<table>
<thead>
<tr>
<th>Landsbygd</th>
<th>Tätort</th>
<th>Totalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 km/h</td>
<td>0,151</td>
<td></td>
</tr>
<tr>
<td>90 km/h</td>
<td>0,289</td>
<td></td>
</tr>
<tr>
<td>110 km/h</td>
<td>0,029</td>
<td></td>
</tr>
<tr>
<td>ML+MV</td>
<td>0,409</td>
<td>0,122</td>
</tr>
<tr>
<td>Totalt</td>
<td>1,000</td>
<td></td>
</tr>
</tbody>
</table>

Enligt modellberäkningar för vägbeskrivningar med backar och kurvor fås i de flesta fall lägre förbrukning med 85 än 89 km/h med undantag för mera extrema kombinationer. Med extrema menas då kombinationer vilka motsvarar ett relativt sett litet trafikarbete med fordonsstypen.

Utslaget på den två år långa försöksperioden och 12 fordon bedöms det som mycket osannolikt att dessa mera extrema förhållanden skulle kunna få något mera betydande genomslag i det totala medelvärdet.

Med viktning baserad på tabell 7:1 och resultat enligt avsnitt 4.1 skulle den förväntade genomsnittliga bränslereduktionen av ändrad inställning av hastighetsregulatorn från 89 till 85 km/h enligt VETO-beräkningar bli ca 0,9 %.

Uppgifterna om bränslereduktioner på ca 5 % enligt olika mindre försök i Skåne kan ifrågasättas (Persson, 2003). Dessa kan primärt förvändas vara ett uttryck för förändringar av andra förutsättningar än sänkt regulatorhastighet. Det är då anmärkningsvärt att sådana förändrade förutsättningar skulle verka i motsatt riktning som i föreliggande studie.

Tänkbara förklaringar till högre förbrukning med sänkt inställning av hastighetsregulator:

- att det genomsnittliga växelläget blivit lägre
- att körbeteendet vid acceleration och retardation förändrats i riktning mot större varv på abs(dV/dT)
- att studiens förare påverkats av hastighetsutvecklingen för medeltrafiken dvs. i riktning mot högre medelhastighet. Utrymme för en sådan ökning finns i alla vägarter med hastighet <85 km/h
- att en hastighetshöjning oberoende av den allmänna hastighetsutvecklingen kan ha skett på vägar med hastighet <85 km/h
- att nederbördens varit större i efter- än i föresituationen, se tabell 4:6
• att lägre hastighet ger köposition längre fram vilken ger högre luftmotstånd vid en och samma hastighet.

För framtiden bör två viktiga frågor vara:
• finns det risk för att en generell sänkning av hastighetsregulatorns inställning till 85 km/h skulle kunna resultera i ökad bränsleförbrukning?
• kan en bränslereduktion förväntas om hastighetsregulatorn ställs in på lägre hastighet än 85 km/h?

Den enda risk för bränsleökning som skulle kunna finnas bedöms vara om den ändrade inställningen av regulatorn skulle påverka körbeteende. Så länge som det finns väg-miljöer i vilka den sänkta regulatorhastigheten är högre än hastigheten i föresituationen finns alltid en risk för hastighetsökning mellan en före- och eftersituation. I övrigt finns en generell risk för systematiska förändringar av abs(dV/dT) mellan en före- och eftersituation.

En kompletterande enkätundersökning, utförd inom en annan studie, har riktats till chaufförer som deltagit i försöket med sänkning av maxhastighet på regulator (Sanseovic, 2005). I rapporten redovisas följande sammanställning:

• ”49 % sätter farthållaren på 83 km/h och hela 38 % sätter den på 85 km/h”
• ”57 % upplever ingen skillnad efter sänkningen av maxhastigheten medan 26 % uppger att det känns lugnare. Endast 17 % uppger att det har blivit stressigare”
• ”de fordon som förarna har störst behov av att köra om är husvagnar/hästtransporter och personbilar med släp”
• ”43 % upplever att hastighetssänkningen har en positiv inverkan på trafiken, 40 % anser att det inte är någon skillnad medan 16 % upplever en negativ påverkan”
• ”83 % anser att hastigheten ej skall sänkas ytterligare, för 9 % spelar det ingen roll medan 8 % kan tänka sig en ytterligare sänkning av hastigheten”
• ”47 % uppger att de vill ha bränsleförbrukningen redovisad per bil, för nästan lika många spelar det ingen roll medan 10 % inte vill ha någon redovisning.”

Möjligheterna till en tvingande sänkning av inställningen av hastighetsregulatorn begränsas av att den maximalt tillåtna hastigheten är olika för tungt fordon utan respektive med släp. En lösning på detta problem skulle kunna vara en automatisk avkänning av om släp är tillkopplat eller ej. Exempelvis skulle följande inställningar av regulatorn då kunna väljas:

• utan släp, ≤89 km/h
• med släp, ≤79 km/h.

Omfattande försök har genomförts i Sverige med hastighetsbegränsare kopplad till lokal hastighetsbegränsning (Biding och Lind, 2002). Däremed finns möjlighet att på sikt komma åt ett eventuellt problem avseende höjd hastighet i miljöer med fordonshastighet-maxhastighet i regulatorn.

Skulle det finnas ett samband mellan regulatorns inställning och dV/dT bör den viktigaste åtgärden vara utbildning och information.

5 Avser en period efter det försök VTI haft som uppdrag att utvärdera.
Möjligheterna att dra slutsatser av en studie med jämförelse av en före- och efter-
situation skulle ha förbättrats av en parallell kontrollgrupp utan sänkt inställning av
hastighetsregulatorn.

Eventuella framtida sänkningar av hastighetsregulatorns inställning borde föregås av
försök motsvarande det här redovisade försöket men utökade med en kartläggning av
samtliga förutsättningar av betydelse för bränsleförbrukning. Ett första steg i en sådan
riktning skulle kunna vara mera ingående intervjuer med åkerierna i föreliggande studie
om möjliga förklaringar till det erhållna resultat.
Referenser

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>SCANIA R144LB6X2NB539</td>
<td>RXL 073</td>
<td>Kämpafrakt AB</td>
<td></td>
<td>2001</td>
<td>390</td>
<td>27 000</td>
<td>295/80R22,5</td>
<td>1</td>
<td>13 630</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>SCANIA R164LB6X2NB480</td>
<td>SSC 277</td>
<td>Jimmie Nilssons Åkeri</td>
<td></td>
<td>2002</td>
<td>363</td>
<td>26 000</td>
<td></td>
<td>1</td>
<td>11 880</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>SCANIA R124LB6x2</td>
<td>RWO 097</td>
<td>Gömåkra Åkeri</td>
<td></td>
<td>2001</td>
<td>309</td>
<td>26 000</td>
<td>315/80R22,5</td>
<td>1</td>
<td>16 220</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>SCANIA R124LB6x2</td>
<td>SEW 172</td>
<td></td>
<td></td>
<td>2001</td>
<td>309</td>
<td>26 000</td>
<td>315/80R22,5</td>
<td>1</td>
<td>16 330</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>FM12 6x2</td>
<td>TLA 662</td>
<td></td>
<td></td>
<td>2002</td>
<td>309</td>
<td>27 000</td>
<td>315/80R22,5</td>
<td>1</td>
<td>17 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>SCANIA R124LB6x2</td>
<td>SEW 172</td>
<td></td>
<td></td>
<td>2002</td>
<td>309</td>
<td>27 000</td>
<td>315/80R22,5</td>
<td>1</td>
<td>17 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>SCANIA R124LB6x2</td>
<td>SOD 872</td>
<td>Christen Nilssons Åkeri</td>
<td></td>
<td>2001</td>
<td>309</td>
<td>26 100</td>
<td>315/80R22,5</td>
<td>1</td>
<td>14 590</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>SCANIA R124LB6x2</td>
<td>DLY 529</td>
<td></td>
<td></td>
<td>1997</td>
<td>346</td>
<td>26 000</td>
<td>315/80R22,5</td>
<td>1</td>
<td>14 390</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>VOLVO FH12 6x2</td>
<td>SCANDIA</td>
<td>Transportledet Sverige AB</td>
<td></td>
<td>1997</td>
<td>294</td>
<td>26 500</td>
<td>315/80R22,5</td>
<td>1</td>
<td>17 310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>VOLVO FH16 6x2</td>
<td>SCANDIA</td>
<td></td>
<td></td>
<td>1997</td>
<td>294</td>
<td>26 500</td>
<td>315/80R22,5</td>
<td>1</td>
<td>16 660</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>VOLVO FH12 6x2</td>
<td>SCANDIA</td>
<td></td>
<td></td>
<td>1997</td>
<td>294</td>
<td>27 000</td>
<td>315/80R22,5</td>
<td>1</td>
<td>16 570</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>VOLVO FH16 6x2</td>
<td>SCANDIA</td>
<td></td>
<td></td>
<td>1997</td>
<td>294</td>
<td>27 000</td>
<td>315/80R22,5</td>
<td>1</td>
<td>16 520</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>SCANIA R124LB6x2</td>
<td>SEW 172</td>
<td></td>
<td></td>
<td>2001</td>
<td>309</td>
<td>27 000</td>
<td>315/80R22,5</td>
<td>1</td>
<td>15 680</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>SCANIA R124LB6x2</td>
<td>SEW 172</td>
<td></td>
<td></td>
<td>2001</td>
<td>309</td>
<td>27 000</td>
<td>315/80R22,5</td>
<td>1</td>
<td>15 490</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>SCANIA R124LB6x2</td>
<td>SEW 172</td>
<td></td>
<td></td>
<td>2003</td>
<td>309</td>
<td>27 000</td>
<td>315/80R22,5</td>
<td>1</td>
<td>15 450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VTI notat 32-2006
<table>
<thead>
<tr>
<th>Åkeri</th>
<th>Regnr</th>
<th>Modell</th>
<th>Arsmodell</th>
<th>Kravmodell</th>
<th>Maxlast</th>
<th>Koppl</th>
<th>Däck bak</th>
<th>Karosse</th>
<th>Motor kW</th>
<th>Totalvikt</th>
<th>Maxast</th>
<th>Koppl 0/1</th>
<th>Skåp fyr-</th>
<th>Skåp fyr- aggregat</th>
<th>Skåp aggregat</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA Åkeri (Malmö LBC)</td>
<td>TKO 847</td>
<td>SCANIA R164GB6x2NA480</td>
<td>2003</td>
<td>353</td>
<td>28,840</td>
<td>14,830</td>
<td>1</td>
<td>295/80R22,5</td>
<td>fyr-</td>
<td>4</td>
<td>295/80R22,5</td>
<td>Skåp fyr- aggregat</td>
<td>Skåp aggregat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLL 574</td>
<td>SCANIA R144GB6x2NA480</td>
<td>2000</td>
<td>339</td>
<td>29,000</td>
<td>14,930</td>
<td>1</td>
<td>295/80R22,5</td>
<td>fyr-</td>
<td>4</td>
<td>295/80R22,5</td>
<td>Skåp fyr- aggregat</td>
<td>Skåp aggregat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RHW 572</td>
<td>SCANIA R144GB6x2NA480</td>
<td>2000</td>
<td>339</td>
<td>29,000</td>
<td>15,240</td>
<td>1</td>
<td>295/80R22,5</td>
<td>fyr-</td>
<td>4</td>
<td>295/80R22,5</td>
<td>Skåp fyr- aggregat</td>
<td>Skåp aggregat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SXS 508</td>
<td>SCANIA R164GB6x2NA480</td>
<td>2002</td>
<td>Euro III</td>
<td>353</td>
<td>28,840</td>
<td>13,720</td>
<td>1</td>
<td>295/80R22,5</td>
<td>fyr-</td>
<td>4</td>
<td>295/80R22,5</td>
<td>Skåp fyr- aggregat</td>
<td>Skåp aggregat</td>
<td></td>
</tr>
</tbody>
</table>
Tabell 1 Exempel på protokoll avseende tankning.

<table>
<thead>
<tr>
<th>Datum tankning</th>
<th>Mätarställning</th>
<th>Förbrukning l/100km</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>701 819</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>702 158</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>702 804</td>
<td>275</td>
</tr>
<tr>
<td>4</td>
<td>703 632</td>
<td>325</td>
</tr>
<tr>
<td>5</td>
<td>704 709</td>
<td>475</td>
</tr>
<tr>
<td>6</td>
<td>705 946</td>
<td>260</td>
</tr>
<tr>
<td>8</td>
<td>706 433</td>
<td>190</td>
</tr>
<tr>
<td>9</td>
<td>707 575</td>
<td>450</td>
</tr>
<tr>
<td>10</td>
<td>708 455</td>
<td>365</td>
</tr>
<tr>
<td>10</td>
<td>708 455</td>
<td>150</td>
</tr>
<tr>
<td>11</td>
<td>709 735</td>
<td>380</td>
</tr>
<tr>
<td>12</td>
<td>710 719</td>
<td>430</td>
</tr>
<tr>
<td>12</td>
<td>710 719</td>
<td>250</td>
</tr>
<tr>
<td>13</td>
<td>712 107</td>
<td>340</td>
</tr>
<tr>
<td>15</td>
<td>713 376</td>
<td>512</td>
</tr>
<tr>
<td>15</td>
<td>713 376</td>
<td>432</td>
</tr>
<tr>
<td>16</td>
<td>714 969</td>
<td>250</td>
</tr>
<tr>
<td>17</td>
<td>715 960</td>
<td>390</td>
</tr>
<tr>
<td>18</td>
<td>718 794</td>
<td>360</td>
</tr>
<tr>
<td>19</td>
<td>717 424</td>
<td>265</td>
</tr>
<tr>
<td>20</td>
<td>718 052</td>
<td>220</td>
</tr>
<tr>
<td>22</td>
<td>719 020</td>
<td>410</td>
</tr>
<tr>
<td>23</td>
<td>719 956</td>
<td>380</td>
</tr>
<tr>
<td>24</td>
<td>721 164</td>
<td>500</td>
</tr>
<tr>
<td>25</td>
<td>723 155</td>
<td>425</td>
</tr>
<tr>
<td>26</td>
<td>723 890</td>
<td>320</td>
</tr>
<tr>
<td>29</td>
<td>725 080</td>
<td>503</td>
</tr>
<tr>
<td>30</td>
<td>725 993</td>
<td>350</td>
</tr>
</tbody>
</table>

I tabell 2 redovisas samma data inlagda i kalkylblad.
**Tabell 2 Kalkylblad med inlagda tankningsdata.*

<table>
<thead>
<tr>
<th>År: 2003</th>
<th>Reg.nr. bil: RWO 097</th>
</tr>
</thead>
<tbody>
<tr>
<td>Månad: 4</td>
<td>Reg.nr. släp:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mätarställning vid sista tankning, föregående månad</th>
<th>Totalt köring</th>
<th>Totalt tankning</th>
<th>Totalt förbrukning</th>
</tr>
</thead>
<tbody>
<tr>
<td>701154</td>
<td>24 839</td>
<td>10 077</td>
<td>4,06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dag nr.</th>
<th>Mätarställning (km)</th>
<th>Tankning (liter)</th>
<th>Förbrukning (liter/mil)</th>
<th>Släp?</th>
<th>Övriga uppgifter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>701819</td>
<td>60</td>
<td>0,90</td>
<td>x=ja</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>702158</td>
<td>150</td>
<td>4,42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>702804</td>
<td>275</td>
<td>4,26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>703632</td>
<td>325</td>
<td>3,93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>704709</td>
<td>475</td>
<td>4,41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>704709</td>
<td>250</td>
<td></td>
<td></td>
<td>#DIVISION/0!</td>
</tr>
<tr>
<td>6</td>
<td>705946</td>
<td>260</td>
<td>2,10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>706433</td>
<td>190</td>
<td>3,90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>707575</td>
<td>450</td>
<td>3,94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>708455</td>
<td>365</td>
<td>4,15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>708455</td>
<td>150</td>
<td>#DIVISION/0!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>709735</td>
<td>380</td>
<td>2,97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>710719</td>
<td>430</td>
<td>4,37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>710719</td>
<td>250</td>
<td>#DIVISION/0!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>712107</td>
<td>340</td>
<td>2,45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>713376</td>
<td>512</td>
<td>4,03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>713376</td>
<td>432</td>
<td>#DIVISION/0!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>714969</td>
<td>250</td>
<td>1,57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>715960</td>
<td>390</td>
<td>3,94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>716794</td>
<td>360</td>
<td>4,32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>717424</td>
<td>265</td>
<td>4,21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>718052</td>
<td>220</td>
<td>3,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>719020</td>
<td>410</td>
<td>4,24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>719956</td>
<td>380</td>
<td>4,06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>721164</td>
<td>500</td>
<td>4,14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>721164</td>
<td>410</td>
<td>2,13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>723155</td>
<td>425</td>
<td>4,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>723890</td>
<td>320</td>
<td>4,23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>725080</td>
<td>503</td>
<td>3,83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>725993</td>
<td>350</td>
<td>#REFERENS!</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Samma data som i tabell 1.

VTI notat 32-2006
Bränsleförbrukning per bil och månad

VTI notat 32-2006
VTI notat 32-2006
VTI notat 32-2006
VTI är ett oberoende och internationellt framstående forskningsinstitut som arbetar med forskning och utveckling inom transportsektorn. Vi arbetar med samtliga trafikslag och kärnkompetensen finns inom områdena säkerhet, ekonomi, miljö, trafik- och transportanalys, beteende och samspelet mellan människa-fordon-transportsystem samt inom vägkonstruktion, drift och underhåll. VTI är världssloddande inom ett flertal områden, till exempel simulator-teknik.

VTI har tjänster som sträcker sig från förstudier, oberoende kvalificerade utredningar och expertutlåtanden till projektledning samt forskning och utveckling. Vår tekniska utrustning består bland annat av kör-simulatörer för väg- och järnvägs-trafik, väglaboratorium, däckprovning-anläggning, krockbanor och mycket mer. Vi kan även erbjuda ett brett utbud av kurser och seminarier inom transportområdet.

VTI is an independent, internationally outstanding research institute which is engaged on research and development in the transport sector. Our work covers all modes, and our core competence is in the fields of safety, economy, environment, traffic and transport analysis, behaviour and the man-vehicle-transport system interaction, and in road design, operation and maintenance. VTI is a world leader in several areas, for instance in simulator technology.

VTI provides services ranging from preliminary studies, high level independent investigations and expert statements to project management, research and development. Our technical equipment includes driving simulators for road and rail traffic, a road laboratory, a tyre testing facility, crash tracks and a lot more. We can also offer a broad selection of courses and seminars in the field of transport.