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Executive summary 
There is a growing recognition that traditional forecasting and decision-making approaches might fall 

short considering the many uncertainties and complexities facing the development of the transport 

system. The project Managing deep Uncertainty in planning for Sustainable Transport (MUST), 

funded by Trafikverket and conducted by KTH ITRL and VTI, aims to explore emerging methods for 

improving the handling of deep uncertainty in the long-term planning of future transport systems. 

The core of MUST is to explore, develop, and demonstrate tools and methods grounded in Decision 

Making under Deep Uncertainty (DMDU) and Exploratory Modeling and Analysis (EMA). These 

approaches are intended to support a shift towards more robust and adaptable planning 

methodologies. 

 

The project is performed in two phases, with the first phase dedicated to laying a foundational 

understanding of deep uncertainty in transport planning. This report covers the first phase which has 

included the following tasks:  

• A literature review on deep uncertainty and existing decision-making and system analysis 

methods under such conditions, with a focus on transportation.  

• A workshop series with Trafikverket identifying transport planning challenges marked by 

deep uncertainty. 

• A case study of applying DMDU through a case study on climate policy robustness (primarily 

reported in other deliverables). 

 

The literature review covers how the nature of uncertainty in socio-technical systems can be 

understood, classified, and analyzed. For policy analysis and decision making, the literature 

underscores the importance of considering multiple futures in model-based analysis when faced with 

deep uncertainties. DMDU and EMA methods are reviewed and summarized, and their application to 

transport are discussed. The literature also summarizes studies on uncertainty in model-based 

transport planning and policy analysis and concludes that the primary location of deep uncertainty is 

in the model inputs in the form of “scenario uncertainty”. In the workshop series, uncertainty related 

to producing the base forecast (Swe: basprognos) and policy analysis for domestic transport climate 

policy was analyzed. This analysis suggested that scenario uncertainty is a main source of deep 

uncertainty, but also uncertainty related to the system boundaries where highlighted. Furthermore, 

potential benefits and drawbacks of EMA and DMDU were discussed. In the case study, it is explored 

how the Scenario tool can be further leveraged by DMDU. More specifically, MORDM (see Section 

2.2.3) is applied to assess to what extent it may allow a broader set of policy options to be explored, 

and how it can provide a better understanding of the robustness and vulnerabilities of different types 

of policies.  

 

A key takeaway from MUST phase 1 is that DMDU and EMA could provide several potential benefits 

and that methods and tools for applying them are maturing. However, it is possibly a long way to go 

before DMDU and EMA can be integrated as a regularly used method during the planning process. 

This is due to organization and process-related issues, as well as technical issues on how to 

effectively apply DMDU and EMA to Trafikverket’s national transport models. These technical issues 

will partly be explored in MUST phase 2.  
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Extended summary 
The purpose of the MUST project is to enhance Trafikverket’s ability to manage deep uncertainty in 

long-term analysis and planning for the future transport system. This is done by exploring, 

developing, and demonstrating tools and methods for Decision Making under Deep Uncertainty 

(DMDU) and Exploratory Modeling and Analysis (EMA). These are emerging approaches from the 

field of policy analysis for analyzing systems and decisions when there is significant uncertainty for 

how the system, or its inputs, will behave in the future. The project is performed by KTH ITRL and VTI 

and financed by Trafikverket. 

 

The MUST project is performed in two phases. In this first phase, the primary goal is to establish a 

knowledge foundation by identifying transport planning challenges that are characterized by deep 

uncertainty and reviewing methods for decision-making and system analysis under such uncertainty. 

A further objective is to explore and showcase methods for DMDU and EMA through a case study in 

which the robustness of various climate policy packages is analyzed. Phase 1 constitutes of two work 

packages (WPs): WP1 which includes a literature review and workshop series with participants from 

the project partners, and WP2 which consists of a case study where DMDU is applied to 

Trafikverket’s Scenario tool for transport climate policy analysis. This report summarizes research 

performed during phase 1 and constitutes one of the phase 1 deliverables. However, the majority of 

WP2 is delivered and described in other deliverables in the form of a scientific paper and a code 

repository. Following the introduction, the report consists of three main chapters: Chapter 2 presents 

a literature review of decision making under deep uncertainty in sociotechnical systems with focus 

on transportation, Chapter 3 describes the workshop series, Chapter 4 provides a description of the 

Scenario tool and discusses its applicability. Finally, Chapter 5 provides a concluding discussion. 

 
Literature review 

The purpose of this literature review is to provide a basis for the MUST project by reviewing central 

theoretical concepts for understanding complexity and uncertainty in sociotechnical systems and 

methods for decision making under deep uncertainty. The review will also survey research and 

previous work analyzing uncertainty in model-based analysis in the transport sector and how 

uncertainty has been dealt with. While not intended as a fully exhaustive review, the focus is on 

introducing key concepts from the literature that are relevant for the MUST project. The literature 

review is organized around three thematic questions: i) what is (deep) uncertainty and how can it be 

understood? ii) how can (deep) uncertainty be accounted for in model-based policy analysis? iii) how, 

and to what extent, has (deep) uncertainty been accounted for in transport planning? 

 

The literature stresses that uncertainty has multiple dimensions and ranges from complete 

determinism, an ideal we cannot achieve, to total ignorance.  Deep uncertainty arises in situations 

where it is challenging to assign probabilities due to system complexity, scarce information, or 

inherent unpredictability of complex systems. Deep uncertainty leads to a need to consider a 

multiplicity of futures, which is typically challenging in decision-making situations. Historically, 

various methods have been used to think about the future, such as: narratives, group narratives like 

Delphi and Foresight, simulation modelling, decision analysis, and scenario-based planning. However, 

each of these approaches has limitations, especially in addressing the multitude of plausible futures 

(Lempert et al., 2003). Maier et al (2016) highlight the importance of considering multiple futures in 
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model-based quantitative policy analysis. They recommend describing uncertainty using distinct 

plausible scenarios, measuring system performance based on its robustness to future changes, and 

designing adaptive strategies that can be adjusted as conditions evolve.  

 

Decision Making Under Deep Uncertainty (DMDU) is a collection of tools and methods used to 

identify strategies that are robust and adaptive in the face of deep uncertainty (Marchau et al., 

2019). DMDU is based on three key ideas: exploratory modelling, adaptive planning, and decision 

support. When applying DMDU, quantitative policy models are used to simulate a range of scenarios 

and assess policy alternatives. There are many different DMDU techniques and tools, of which many 

are complementary. For the MUST project, two of these methods are in focus: Robust Decision 

Making (RDM), and Exploratory Modeling and Analysis (EMA).  

 

RDM focuses on identifying strategies that are robust against a wide variety of future conditions. It 

challenges the prevailing notion of basing policy analysis on a prediction of a system’s future state, 

aiming instead to support decision-making in cases of deep uncertainty when definitive forecasts 

cannot be made. Moreover, if RDM is performed in collaboration with relevant stakeholders, it can 

enhance the understanding of the policy problem, generate additional policy alternatives, and 

provide deeper insights into the inherent trade-offs of policies. 

 

EMA is a more general approach which involves creating, exploring, and analyzing many alternative 

policies, models or scenarios to understand the impact of uncertainties on system behavior and 

decision outcomes (Kwakkel and Pruyt 2013). EMA utilizes several methods and techniques, such as 

sampling, sensitivity analysis, uncertainty analysis, scenario discovery, and (multi-objective) 

optimization. To structure EMA problems, the XLRM framework is often used to specify the external 

uncertainties (X), policy levers (L), relationships in the system (R), and outcomes of interest (M). EMA 

is essentially an analysis of how regions of uncertainty (X and R) and the decision space (L) relate to 

the outcome space (M).  EMA differentiates between two applications: open exploration and 

directed search. Open exploration systematically samples uncertainty or decision space while 

directed search uses mathematical optimization to search the decision or uncertainty space, aiming 

to identify policies or scenarios of interest.  

 

Often, EMA problems have multiple objectives involving trade-offs. In these cases, multi-objective 

optimization is performed, often using a multi-objective evolutionary algorithm (MOEA). Directed 

search can be used to generate candidate policies within the RDM framework. One such approach is 

Many Objective Robust Decision Making (MORDM), where a MOEA is used to generate Pareto-

optimal policies based on a reference scenario. Thereafter, the robustness and vulnerabilities of 

these candidate policies are evaluated using RDM. There are also closely related methods to MORDM 

designed to put more emphasis on robustness during the policy search phase such as multi-scenario 

MORDM and multi-objective robust search (MORO). For all these approaches, specifying relevant 

robustness metrics is crucial, with robustness understood either as low uncertainty or minimization 

of undesirable outcomes. Different robustness metrics emphasize various aspects of robustness, 

underscoring the need for careful selection tailored to the problem at hand and use of 

complementary metrics. 
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In the transport planning field, it has for several decades been common practice to make a transport 

forecast of a future year (typically around 20 years in the future) and to calculate costs and benefits 

of transport projects for the forecast of this forecast year. In some cases, sensitivity analyses have 

been made in which the planner tries a few changes to the input data such as changes to assumed 

population growth or assumed future fuel prices. The accuracy of these transport forecasts has been 

evaluated in several studies (Andersson et al., 2017; Cruz & Sarmento, 2020; Hoque et al., 2021) 

coming to the conclusion that transport forecasts are more often optimistic rather than pessimistic, 

over-estimating demand and under-estimating costs when compared to actual outcome statistics. 

Thus, the uncertainty in the forecast is not purely random, there is a systematic bias. In the reviewed 

studies, the over-estimation of forecast traffic flows/vehicle kilometers compared to actual outcome 

statistics is in the order of 5%-20%. It is also found that rail traffic forecasts in general deviate more 

from actual outcomes compared to road traffic forecasts.   

 

Rather than conducting a handful of sensitivity analyses of selected input parameters, researchers 

and planners have in the latest years tried to deal with uncertainty in transport planning and 

transport forecasting in a more all-encompassing way, applying approaches from the DMDU field. 

This implies that policies/measures are tested against a large set of scenarios with varying input 

parameters within defined ranges, and that the policies/measures that are most robust across the 

different scenarios are selected. The prominent example of this is a U.S. model called TMIP-EMAT 

(Lemp et al., 2021; Milkovits et al., 2019). TMIP-EMAT applies EMA together with a travel forecasting 

model to give a range of outcomes given uncertainties in employment levels, values of travel time 

etcetera.   

 

Workshop series 

The purpose of the workshop series is to bring together experts within various areas of model-based 

analysis at Trafikverket with researchers from the project partners to identify, analyze and discuss 

deep uncertainty and the challenges it poses for Trafikverket’s long-term planning and policy analysis 

processes, and methods for managing it. The workshop series consists of two workshops, Workshop 

1 (WS1) and Workshop 2 (WS2), which build on each other.  In WS1, focus is on the concept of deep 

uncertainty and to analyze how it relates to some of Trafikverket’s analysis needs. During the 

workshop, a framework for classifying and communicating deep uncertainty in model-based 

foresight or policy analysis is introduced. Exercises are performed to identify and categorize 

Trafikverket’s analysis needs, and to perform an analysis of uncertainty for one of the analysis needs, 

producing the reference forecast (basprognos) for the Swedish transport system, by applying the 

aforementioned framework. WS2 is focused on the concept of decision making under deep 

uncertainty and introduces a framework for uncertainty in the policy analysis process and an 

overview of exploratory modelling and analysis by presenting the case study in WP2. The exercises 

are centered on the case of identifying and analyzing policies for reaching the national climate 

targets for the transport system. WS2 is concluded by a brainstorming session on the implications for 

Trafikverket and to generate ideas of potential activities Trafikverket could undertake to improve its 

ability to manage deep uncertainty. 

 

An important finding, which is also in line with what the literature has reported, is that typically, 

scenario uncertainty (i.e. model input) uncertainty tend to be a larger issue than model uncertainty. 

In other words, the forecasting models can be expected to give fairly accurate results given that 
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analysts were able to correctly forecast the state of the world for the forecast year. A complication is 

that much of the scenario assumptions for national transport forecast are “inherited” from forecast 

made by other agencies (e.g. about economic development). 

 

While several workshop participants could see the benefits of EMA and DMDU as tools for a 

systematic account of uncertainty in various types of analyses, it was stressed that different types of 

sensitivity and uncertainty analyses are already performed. It was also brought up that it is important 

that the result of the analyses, which are to be used for decision support for policymakers, cannot be 

too complicated, and that it is not obvious if DMDU can ensure that.  

 

Trafikverket’s Scenario Tool: description and applicability 

One task in work package 2 is to assess Trafikverket’s Scenario tool for climate policy analysis (the 

Scenario tool) (Trafikverket, 2020a) and the application of it to generate policy scenarios for reaching 

the climate targets as part of the governmental task to develop alternative scenarios for the 

transport system (Trafikverket, 2020d). A few years ago, Trafikverket was given a task by the Swedish 

government to provide alternative forecast scenarios for the transport sector and how they relate to 

the political goals for the transport area, including the climate targets (Trafikverket, 2020d). This in 

turn triggered the development of the Scenario tool. The Scenario tool (Trafikverket, 2020a) is an 

Excel-based tool that is intended to support the analysis of whether various climate strategies 

(combinations of policy measures) lead to a future which meets the climate goals or not. The 

Scenario tool covers domestic1 road transport including light vehicles (cars and light trucks2), heavy 

trucks and, partly, bus traffic. The scenario tool is developed to study climate strategies that include 

three types of policy measures 1) an increased share of electric vehicles and more fuel-efficient 

vehicles, 2) an increased share of renewable fuels, 3) reduced road traffic activity.  

 

Trafikverket did, using the Scenario tool, identify eight climate strategies that manage to reach the 

climate target for the base scenario, which vary in the combination of policies applied to reach the 

goal (Trafikverket, 2020d). In other words, these climate strategies are by design goal fulfilling and 

illustrate different ways of reaching the climate targets, assuming the development of other factors 

in line with the reference scenario.  

Two of the policy strategies identified using the Scenario tool, namely: B and C2 were thereafter 

analyzed more in-depth, see Trafikverket (2020e) for details. This analysis was made using the 

national forecasting models Sampers and Samgods in which the corresponding policy strategies were 

represented. Following this analysis, one of the analyzed policy strategies, which relied on a high 

amount of biofuel usage, has been adopted as the presumed transport climate policy in subsequent 

base forecasts up until currently (Trafikverket, 2020c). 

 

The main aim of the Scenario tool is according to Trafikverket (2020a, p. 6) to simplify analyses of the 

road transport sector’s CO2 emissions. Furthermore, it is stated that the conventional forecast 

models that produce more disaggregate and detailed forecasts (Sampers and Samgods) are complex, 

require a large and broad set of input and are time- and resource intensive to run. Therefore, they 

are practically unsuited to use for identifying goal-fulfilling scenarios by iterating over parameter 

 
1 Traffic activity performed at Swedish territory 
2 With maximum permissible weight less than 3.5 tonnes 
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space of policy lever combinations. The Scenario tool can therefore be used to quickly test, on an 

overarching level, a large number of policy combinations, to identify a set of policy candidates. To 

summarize, Trafikverket describes the Scenario tool as an option to quickly perform rough, aggregate 

analyses of climate policies iteratively and exploratory. The Scenario tool can be used in a sequential 

process in conjuncture with the conventional forecasting models in which the Scenario tool is first 

used to identify policy candidates based on their estimated impacts. The candidate polies can then 

be analyzed more in detail with these models to provide data for more comprehensive decision 

support 

 

In the case study in work package 2, it is explored how the Scenario tool can be further leveraged by 

DMDU. More specifically, MORDM (see Section 2.2.3) is applied to assess to what extent it may allow 

a broader set of policy options to be explored, and how it can provide a better understanding of the 

robustness and vulnerabilities of different types of policies. For the case study, the following 

modifications to the scenario tool have been made: 

• Identified bugs were corrected, 

• The reference scenario was updated to align with the base forecasts of 2023,  

• A module to enable crude analysis of potential impacts of automated driving technology 

(driverless vehicles) was added, 

• A simplified method for specifying the degree of biofuel admixture was added, 

• Minor adaptations were made to simplify the set up and to run the Scenario tool via Python, 

using the open-source library EMA-workbench (Kwakkel, 2017).  

 

Concluding discussion 

The results from the literature review and workshop series both suggest that the deep uncertainty in 

model-based analysis in the transportation domain often relates to specification of model inputs, so 

called scenario uncertainty. Another important area of uncertainty relates to the modelling of 

policies, or combinations thereof, which have previously not been implemented or properly 

evaluated. An overarching insight from MUST phase 1 is that DMDU has potential to improve 

transport planning and policy analysis, since it offers systematic approaches to account for scenario 

uncertainty and policy impact uncertainty. 

 

The literature on DMDU developed substantially during the last decade and there is also a growing 

number of case studies applying different DMDU methods to various problems. Furthermore, the 

development of well-maintained open-source software supporting DMDU has lowered the barrier for 

experimenting and implementing DMDU for researchers and practitioners. However, the DMDU 

literature has to a large extent so far been focused on method development and prospective case 

studies with limited effort on the policy making context and how DMDU can be successfully applied 

for real world policy making.  

 

For specific, stand-alone, infrastructure investment analyses or policy analyses, it may be relatively 

straightforward to implement DMDU without significant additional effort. For instance, many 

methods for robust decision making are simple to apply in cases where there are predefined 

planning or policy options, given that the system model can be used to represent the deep 

uncertainties of interest. It is, however, presumably a fairly long way to go for DMDU to become a 

core approach within the standard national transport infrastructure planning practice. A central issue 
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is to consider and assess to what extent DMDU can and should be used during different stages of the 

planning process. Also, it needs to be analyzed to what extent it can and should constitute a 

complement to existing practices or whether it would be required to fundamentally adjust certain 

parts of the planning process. Applying DMDU to existing national transport models (Sampers and 

Samgods) requires a non-negligible amount of work to adapt the models and their infrastructure to 

enable EMA or DMDU. It requires the development of tools that supports to automatically generate, 

implement, run and store results from hundreds or thousands of scenarios. Furthermore, the rather 

long computation time of these models is an issue that needs to be accounted for and managed. In 

phase 2 of MUST, EMA is applied to the Samgods model and some of these issues will be explored.  
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1 Introduction 
As the pace of technological and societal development continues to accelerate, it brings with it a 

complex landscape of uncertainties for the transport sector. The capability required to make long-

term forecasts regarding the transport system becomes increasingly intricate. The emergence of new 

technologies comes with a need for understanding their multifaceted implications. This 

understanding is important in many aspects of transportation planning and policy making. For 

instance, to analyze the need of policy measures for achieving sustainability and transport policy 

goals or making appraisal of societal costs and benefits of policies or investments.  

 

To a large extent, conventional transport planning relies on forecasting methods using large-scale 

transportation models within a predict-then-act paradigm for policymaking. One, or a few, specific 

predictions of the demand- and supply side for the future transport system are made based on which 

policy needs are identified, and policy alternatives are evaluated. This approach, although 

systematic, may not be appropriate to account for the deep uncertainties that surround the 

development of the future transport system since it relies on that policymakers and analysts can 

agree upon a most likely scenario for the development of society, technology, and the economy, how 

to reflect these factors in model inputs, and the appropriate ways to model the interactions within 

the transport system. Agreeing on these factors cannot be expected in situations of deep 

uncertainty. 

 

The purpose of the MUST project is to strengthen Trafikverket’s ability to manage deep uncertainty 

in long-term analysis and planning for the future transport system. This is done by exploring, 

developing, and demonstrating tools and methods for Decision Making under Deep Uncertainty 

(DMDU) and Exploratory Modeling and Analysis (EMA). These are emerging approaches from the 

field of policy analysis for analyzing systems and decisions when there is significant uncertainty for 

how the system, or its input, will behave in the future. 

 

The MUST project is performed in two phases.  For this first phase, the primary goal is to establish a 

knowledge foundation by identifying transport planning challenges that are characterized by deep 

uncertainty and reviewing methods for decision-making and system analysis under such uncertainty. 

A further objective is to explore and showcase methods for DMDU and EMA will through a case study 

in which the robustness of various climate policy packages is analyzed. This report summarizes the 

research performed during Phase 1 and is one of the project deliverables for phase 1 along with the 

additional deliverables listed in Table 1. Phase 1 is organized into two work packages (WP): WP1 and 

WP2. 

 

Work package 1 Knowledge foundation for understanding and managing deep uncertainty in long-

term planning for a sustainable transport system  

Key activities: 

• Literature review on methods for analysis and decision-making under uncertainty 

• A series of workshops with Trafikverket 
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The goal of WP 1 is to conceptualize and delineate the challenges that uncertainties in technical and 

societal developments pose for long-term planning for a sustainable transport system. The literature 

study aims to 1) provide a theoretical foundation for the project's themes around complex 

sociotechnical system uncertainty and its implications for analysis and policymaking for the future 

transport system, 2) review existing approaches for analysis and decision-making under deep 

uncertainty, and 3) provide an overview of research addressing uncertainty in the transport sector. 

The workshop series consists of two workshops with participants from Trafikverket and researchers 

from KTH and VTI. 

 

Work package 2 Case study: Uncertainty and robustness analysis of policy strategies for reaching 

the climate targets for the transport sector 

Activities: 

• Assessment of the current version of Trafikverket's scenario tool and previously conducted 
policy analysis. 

• Development of the scenario tool with a module for autonomous vehicles. 

• Robustness analysis of policy strategies to achieve climate goals. 

The purpose of Work package 2 (WP2) is to serve as a pilot study within MUST for applying EMA 

and/or DMDU to support analysis and decision making for a sustainable planning or policy issue of 

relevance for the Swedish Transport Administration (STA). The focus for this pilot is to broaden a 

previous analysis that STA has performed for identifying different types of policy packages that 

enables the climate goals for the Swedish transport sector to be achieved (Trafikverket, 2020d). The 

previous analysis used a simplified climate policy assessment model (hereafter denoted as the 

Scenario tool) to identify fulfilling policy packages that fulfill the Swedish climate target if other 

factors assumed to be in line with the base forecast. The pilot study in WP2 applies EMA and DMDU 

to the Scenario tool to evaluate the robustness of the proposed policy packages against a large 

number of scenarios that accounts for uncertainty in the assumptions for the base forecast as well as 

uncertainties in model parameters which affect the modeled magnitude of policy impacts. It also 

compares the robustness of the policy packages presented in the previous analysis with policies that 

are generated using DMDU. To include the potential impacts of driverless vehicles, which is one 

technology uncertainty with potential to substantially affect transport demand and climate 

emissions, the Scenario tool is extended to model these effects in a simplistic way.  

 

While the findings of this pilot study are interesting in itself, it also serves the project by building a 

foundation of knowledge and tools (code) for applying EMA and DMDU for the more substantial 

EMA/DMDU study that will be performed Phase 2. It is also used as an example during the workshop 

series in WP1.  

 

Work package 2 is primarily delivered in other deliverables than this report, namely a research paper 

and a code repository, see Table 1. Only the review of the Scenario tool is fully covered by this 

report, and the other tasks are only summarized. 
Table 1 Overview of WP2 tasks and their corresponding primary deliverable. 

Task Primary deliverable 

Review of the Scenario tool This report 
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Extend the scenario tool to study driverless vehicle impacts Model in code repository 

Develop code for applying EMA and DMDU to the Scenario tool Scripts in code repository 

Perform robustness analysis of climate policies Research paper 

 

The scope for this report is primarily national transport planning and policy analysis performed by, 

closely related to, the Swedish Transport Administration. When terms such as “transport planning 

applications”, “planning practices”, etc. it typically refers to applications or practices of the Swedish 

Transport Administration. 

 

The remainder of this report is organized as follows: Chapter 2, presents the literature review, 

Chapter 3 summarizes the workshop series, Chapter 4 provides a description of the scenario tool and 

discusses its applicability, and Chapter 5 provides a concluding discussion. 
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2 Literature review of decision making under 
deep uncertainty in sociotechnical 
systems: an overview and focus on 
transportation 

The purpose of this literature review is to provide a basis for the MUST project by reviewing central 

theoretical concepts for understanding complexity and uncertainty in sociotechnical systems and 

methods for decision making under deep uncertainty. The review will also survey research and 

previous work analyzing uncertainty in model-based analysis in the transport sector and how 

uncertainty has been dealt with. While not intended as a fully exhaustive review, the focus is on 

introducing key concepts from the literature that are relevant for the MUST project. The review of 

theoretical perspectives on uncertainty and methods for managing deep uncertainty is not limited to 

the transportation sector; rather, it seeks inspiration from work across the broader area of decision-

making under deep uncertainty. 

 

The literature review is organized around three thematic questions: 

1. What is (deep) uncertainty and how can it be understood?  

2. How can (deep) uncertainty be accounted for in model-based policy analysis? 

3. How, and to what extent, has (deep) uncertainty been accounted for in transport 
planning? 

By addressing these questions, this literature review aims to provide guidance in terms of useful 

concepts, frameworks, and methods for other activities in the MUST project. Furthermore, it can 

serve as an introduction to deep uncertainty for Trafikverket and other actors in the field of transport 

planning and policy making. 

2.1 What is (deep) uncertainty and how can it be 
understood? 

2.1.1 A short note on the history of uncertainty in science 

The literature on decision making under deep uncertainty highlights that different fields and 

disciplines have understood the concept of uncertainty in slightly different ways. The various 

philosophical viewpoints and epistemological discourses imply various meanings for uncertainty. 

Furthermore, the understanding and role of uncertainty in science have developed and changed over 

time. Van Asselt (2000) and Agustdinata (2008) both present overviews on the history of the 

understanding of uncertainty in science and various epistemologies. Below, a highly condensed 

summary of these overviews is provided.  

 

The underpinning idea of the Enlightenment, which was influenced by Descartes and succeeding 

thinkers like Locke, Diderot, Voltaire, Kant, and Hegel, is of science as a provider of certainty. 

Through systematic investigation using mathematics and quantitative methods, certain knowledge 
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on reality can be obtained and there is a distinct separation between the domain of objective facts 

and the domain of subjective opinions. The Enlightenment thinking grew into the positivistic 

epistemology (positivism) which can be defined as “the search for and prediction of empirical 

regularities to make universal, true statements” (van Asselt 2000 p.78), which ultimately, implies that 

for positivism, uncertainty is unscientific. Positivism has historically been the dominant epistemology 

in science well into the 20th century. However, there has always been criticism of positivist 

epistemology. During the 18th century, Hume and the skepticism school of thought, criticized 

positivism on the basis that reason is insufficient for bridging the gap between observations and 

reality since our minds cannot grasp the causal connections among events based on experience. This 

means that there are inherent limits to our ability to make predictions of future events. The notion of 

true knowledge was challenged also by some of the Enlightenment thinkers. For instance, Hegel was 

of the position that systematic examination did produce knowledge, but it was neither perfect nor 

complete knowledge.  

 

In the early 20th century, the rise of new ideas in physics and mathematics such as statistical 

mechanics and Einstein’s model of mass, time, and space as relative and not absolute concepts, 

sparked a more serious inquiry of the role of uncertainty in science. During the same period, 

uncertainty was also becoming a more prominent topic in other fields with a prominent example 

being the work of Knight (1921) in the field of economics. Knight distinguished the concepts of risk 

and uncertainty from each other with risk being the part of the unknowable that is calculable and 

controllable while the remainder of the unknowable is uncertain. In the second half of the 20th 

century there was more widespread criticism of positivist epistemology. Two “anti-positivism” 

movements emerged, post-modernism which stemmed from philosophy and social constructivism 

which emerged within the field of sociology of science and technology. 

 

Post-modernism refutes central viewpoints of the positivistic epistemology. Post-modernists are 

skeptical to the human ability to represent reality objectively and refute that any knowledge can be 

certain. Instead, post-modernists claim that reality is a construct of scientific concepts and that there 

is no objective truth. Furthermore, reason and logic are not understood as being universally valid but 

are rather valid only within a specific scientific or intellectual context. Prominent post-modernism 

scholars include Foucault and Derrida who were inspired by the works of scholars such as Nietzsche 

and Heidegger. 

 

Social constructivism has its empirical foundations from sociological and anthropological studies on 

the production of scientific knowledge. Social constructivism denies that scientific knowledge can be 

produced according to purely rational cognitive factors. Instead, the production of science is a social 

process and scientific knowledge is constructed and negotiated through social processes. Even 

though it is possible to distinguish between valid and invalid scientific statements, the criterion for 

such judgments cannot according to social constructivists be derived from an “abstract and universal 

faculty of reason” but must be socially constructed. van Asselt summarize social-constructivism 

epistemology as the following theses: 

• What knowledge is produced and how knowledge is used are socially driven decisions. 

• Central processes in theory building, e.g., acceptance or rejection of theories are entirely 
social. 



REPORT  2024-02-01 

MUST: Phase 1 Albin Engholm & Ida Kristoffersson 

 

14 

 

• What scientists expect to observe, can observe, and want to observe are outcomes of social 
negotiations. 

• There is no single scientific method to which all scientists can refer. What methods are seen 
as appropriate is determined by social processes. 

Post-modernism and social constructivism have raised fundamental questions about objectivity and 

certainty in science, which van Asselt synthesizes into the following two statements: 

• Science is not a purely objective, value-free activity of discovery – science is a creative 
process in which social and individual values interfere with observation, analysis, and 
interpretation.  

• Knowledge is not equivalent to truth and certainty. 

Another perspective that has shaped the understanding of uncertainty in science during the 20th 

century is based on Heisenberg’s uncertainty principle. In short, the principle states that it is not 

possible to obtain all information since the act of obtaining the information often alters the 

phenomena being studied. Also, in economics, the limits of knowledge and achieving certainty by 

seeking more information was stressed during this period. For instance, the economist Shackle 

formulated it as follows. “There would be no uncertainty if a question could be answered by seeking 

additional knowledge. The fundamental imperfection of knowledge is the essence of uncertainty.” 

(Shackle, 2010).  

 

All in all, this points to an epistemological position where uncertainty can still prevail in situations 

with a lot of information available. In other words, uncertainty is not simply the absence of 

information. Also, getting more information about a system can increase uncertainty, for instance we 

may learn the system’s processes are more complex and have uncertainties previously not 

understood when it is studied more. In other words, there are inherent limitations to the reduction 

of uncertainty through the acquisition of more information or knowledge. 

2.1.2 Defining uncertainty and deep uncertainty 

In the simplest sense, uncertainty can be defined as a limited knowledge of future, past, or current 

events (Walker et al. 2013). In mathematical terms, this can be expressed as that if the probability of 

an event is not equal to one or zero, the event is uncertain. This follows the tradition of 

understanding uncertainty as a lack of knowledge and the distinction between risk and uncertainty 

which often is attributed to Knight (1921), see Section 2.1.1.  As will be apparent in the forthcoming 

sections of this report, knowledge, and thus uncertainty, consist along a spectrum ranging from the 

unachievable ideal of complete determinism to total ignorance on the other side (Marchau et al., 

2019). The contemporary literature provides frameworks that supports a nuanced understanding of 

uncertainty both by separating various degrees of uncertainty along the aforementioned spectrum, 

but also relating to other dimensions of uncertainty as well as different sources of uncertainty.  

 

Deep uncertainty can be thought of as situations where it is difficult to assign probabilities to 

different events or predict outcomes due to complexity, lack of information or inherent 

unpredictability of a system. Deep uncertainty is thus a particular type of uncertainty that resides 

towards the total ignorance end of the uncertainty spectrum. Uncertainty that is more towards the 

other end of the uncertainty spectrum is sometimes denoted using contrasting terms such as shallow 

uncertainty. A definition of deep uncertainty is provided by (Lempert et al., 2003) and this is 
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commonly referred to in subsequent literature about deep uncertainty (Agustdinata, 2008; Kwakkel 

& Pruyt, 2013; Maier et al., 2016; W. E. Walker et al., 2013): 

Deep uncertainty exists when analysts do not know, or the parties to a decision cannot 
agree on, (1) the appropriate models to describe the interactions among a system’s 

variables, (2) the probability distributions to represent uncertainty about key variables and 
parameters in the models, and/or (3) how to value the desirability of outcomes. (Lempert 

et al., 2003, pp. 25–26) 

 

Maier et al. (2016) describe deep uncertainty as a concept used to encapsulate the notion of multiple 

plausible futures. They point out that in addition to deep uncertainty, other concepts describing this 

notion have emerged in the literature, seemingly independently of each other during the same 

period which may indicate that the realization of the need to deal with multiple plausible futures has 

been gaining ground in several different disciplines. Two examples of such concepts are Volatility, 

Uncertainty, Complexity and Ambiguity (VUCA) (Bennett & Lemoine, 2014), and global/local 

uncertainty (Mejia-Giraldo & McCalley, 2014) which are both summarized in Section 2.1.3.  

2.1.3 Typologies and framework for classifying uncertainty and its dimensions 

In addition to the distinctions between risk and uncertainty, and shallow and deep uncertainty, as 

discussed in the previous section, the literature has also outlined other aspects and dimensions of 

uncertainty and developed frameworks to represent it. There are various classifications and reviews 

of sources and types of uncertainties available, see e.g.  Functowitz and Ravertz (1990), van Asselt 

(2000). As noted by Agustdinata (2008), a mainstream conceptualization of uncertainty has emerged 

in the literature on model-based decision support. The following sections summarizes some of the 

frameworks for describing and classifying uncertainty that have been developed based on this 

conceptualization.  

 

In an effort to synthesize and integrate previous research on uncertainty in model-based policy 

analysis into a joint coherent typology, Walker et al. (2003) developed a framework for uncertainty 

classification. This framework is intended to provide the foundations for a common language that 

clarifies and help illuminate the various dimensions, and types, of uncertainty thereby helping to a) 

facilitate communication among policy analysts, b) enhance communication about uncertainty 

between policy analysts, policy makers and stakeholders, and, c) help policy analysts understand and 

appreciate the different dimensions of uncertainty, which can support identification and 

prioritization of uncertainties and help in the selection of appropriate treatment of a given 

uncertainty.  

Within the framework, three dimensions of uncertainty are distinguished: 1) the location, 2) the 

level, and 3) the nature of uncertainty. Kwakkel, Walker and Marchau (2010) develop the Walker et 

al framework further, keeping the three dimensions of uncertainty but justifying several changes to 

the descriptions of the three dimensions of uncertainty based on subsequent research applying the 

initial Walker framework.  

 

Location of uncertainty – where uncertainty is located in the system analysis framework.  

Walker et al. (2003) identify five generic locations of uncertainty: Context, Model, Inputs, Parameters, 

and Model outcomes. 
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• Context. The context is mainly defined by the system boundaries, which are the demarcation 
of aspects of the real world that are included in the model from those that are not included. 
Context uncertainty includes uncertainty about the external economic, environmental, 
political, social, and technological situation that forms the context for the problem being 
examined (Walker et al., 2003).  

• Model. Model uncertainty can be either uncertainty in the conceptual model that specifies 
the variables and relationships inside the system boundaries, or uncertainty in the computer 
implementation of the conceptual model. It addresses uncertainties related to bugs and 
errors in the code, or hardware errors. Petersen (2012) calls this ‘technical model 
implementation’; and Walker et al. (2003) call this ‘computer implementation’.  

• Inputs. Input data uncertainty refers to the uncertainties associated with determining 
appropriate values for the inputs to the model. This data can be separated into 
uncontrollable (external) factors that are exogenous to the decision maker, which often are 
estimated based on empirical data or derived from other models, and controllable variables, 
which are inputs that the decision maker can influence. 

• Parameters. Parameter uncertainty is connected to data and methods to calibrate the 
internal parameters of the model.  

• Model outcomes. Uncertainty in model outcomes which is due to how other forms of 
uncertainties have accumulate after propagating through the model.  

Kwakkel et al. (2010) integrate the frameworks of Walker et al. (2003) and Petersen (2012) and 

update the possible locations of uncertainty into: System boundary, Conceptual model, Computer 

model, Input data, Model implementation, and Processed output data.  

 

Level of uncertainty – to what extent uncertainty is present in the system analysis framework. 

Walker et al. (2003) identify three levels (degrees) of uncertainty: Statistical uncertainty, Scenario 

uncertainty, and Recognized ignorance. These levels can be seen as different regions of the 

aforementioned uncertainty spectrum where the degree of uncertainty is smallest in the case of 

statistical uncertainty and largest in the case of recognized ignorance. Kwakkel et al. (2010) argue 

that there have been several problems with the levels of uncertainty defined in Walker et al. (2003), 

since there is no common understanding of what the terms statistical uncertainty, scenario 

uncertainty and recognized ignorance means. Therefore, the authors see the need to a redesign of 

the level dimension. They instead describe level of uncertainty in terms of assignment of likelihood to 

things or events. Their proposed four levels capture differences in the types of scales that are used in 

practice.  

• Level 1, shallow uncertainty: probabilities can be used to specify the likelihood or plausibility 
of the uncertain alternatives. Ratio scale can be used. 

• Level 2, medium uncertainty: alternatives can be enumerated, and rank ordered in terms of 
their likelihood, but how much more or less likely cannot be specified. Ordinal scale can be 
used. 

• Level 3, deep uncertainty: alternatives can be enumerated, but for various reasons, such as 
decision makers or experts cannot agree or do not know, even a rank ordering is ruled out. 
Nominal or categorical scale can be used.  

•  Level 4, recognized ignorance. Alternatives cannot be enumerated, admitting the possibility 
of being surprised. 

Nature of uncertainty – which type of uncertainty that is present in the system analysis framework.  



REPORT  2024-02-01 

MUST: Phase 1 Albin Engholm & Ida Kristoffersson 

 

17 

 

Walker et al. (2003) delineate two different natures of uncertainty: 

• Epistemic uncertainty (epistemology / lack of knowledge): Uncertainty due to the 
imperfection of our knowledge, which may be reduced by more research and empirical 
efforts. 

• Variability uncertainty (ontology / inherent variability): Uncertainty due to inherent 
variability, which is especially applicable in human and natural systems and concerning social, 
economic, and technological developments.  

Kwakkel et al. (2010) add a third nature of uncertainty:  

• Ambiguity uncertainty: Uncertainty arising due to different actors interpreting data and 
results differently because of differences in frames and values.   

Walker et al. (2003) propose that their framework can be presented and applied in the form of a so-

called uncertainty matrix. The aim of using an uncertainty matrix is to get an overview of where, to 

what extent and of which type, uncertainty is present in the model-based decision support under 

discussion. The aim is also to inspire analysts to make an explicit effort to identify, estimate, assess, 

and prioritize contributions to uncertainty. Several papers have applied the Walker framework, and 

over the years many different changes were made to the uncertainty matrix. These modifications 

were counter to the purpose of the original Walker framework to provide a common framework to 

facilitate communication about uncertainty. Therefore, Kwakkel et al. (2010) took on the challenge to 

review all applications of the Walker framework and synthesize the changes into an updated 

uncertainty matrix. The updated uncertainty matrix is shown in the figure below. As described above, 

the new framework includes an extra category in the nature dimension – Ambiguity, which highlight 

that uncertainty can arise because differences in frames and values can make actors interpret data 

differently. Furthermore, the level dimension has been reworked from to the initial framework by 

Walker et al. (2003) so that it now includes four levels of uncertainty: shallow, medium, deep, and 

recognized ignorance. The location dimension is also slightly reworked. The template for the 

uncertainty matrix by (2010) is shown in Figure 1.   
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Figure 1 Uncertainty matrix, proposed by Kwakkel et al. (2010) as a tool to facilitate classification and communication in 
model-based policy analysis. The intention is that analysts can use the matrix to comprehensively map analysis-specific 
uncertainties by listing them in the corresponding cell of the matrix.  

For the policy making process there are other factors and types of uncertainty to consider in addition 

to uncertainty in system analysis. For policy making, uncertainty may be understood as a difference 

between the available knowledge and the required knowledge for making the best policy decision 

(Marchau et al., 2019). A framework for classifying uncertainty related to the policy analysis process 

(which can also be applied to decision making situations in general) is presented by Walker (2000), 

Walker et al (2013) and Marchau (2019), see Figure 2. The framework is based on the view that 

decision-making concerns the choice between alternative decisions aiming to affect the system so 

that its outcomes are changed in a desirable way. At the core of their framework is the system model 

(R) which specifies the system boundaries and the system’s internal structure, that is, the system’s 

elements and their relationships. The system is affected by two types of factors. External forces (X) 

are forces acting on the system that the decision makers cannot control but that may have a 

significant impact on the system, for instance technological or social developments. Policies (P) are 

the forces under control by the actors in the policy domain. Policies are intended to affect the system 

so that some measure(s) of the system’s performance, i.e., outcomes of interest (O) change in a way 

that is the desirable based on the relative valuation of the goals, objectives, and preferences (W) of 

the decision makers and stakeholders.  
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Figure 2 The framework for the policy analysis process, from Marchau et al. (2019). 

Based on this framework, a few locations of uncertainty that may arise can be outlined. 

• Scenario uncertainty. The development of external forces may be highly uncertain which 
makes it challenging to identify which potential developments will be most relevant and 
important for the future performance of the system. 

• Structural uncertainty. It may be uncertain how the system responds to external factors (X 
and P). This means that even if the developments of external factors are not uncertain, 
structural uncertainty may be a major source of uncertainty. Complex systems may undergo 
structural change when affected by external factors. Furthermore, sociotechnical systems 
can also undergo endogenous structural change due to feedbacks, delays, emergent or self-
organizing behaviors and it may be the case that the internal causal mechanisms are not fully 
known.  

• Uncertainty in valuation of outcomes. Different stakeholders may have contesting views on 
the relative importance of various outcomes of interest and there may be disputes on what 
grounds empirical valuation should be done (e.g., social cost of carbon versus shadow price) 
or uncertainty from poor empirical methods or lack of data. Furthermore, over time, new 
stakeholders of relevance might emerge, or the perception of the importance of existing or 
new problems may change, meaning that the future relative valuation of outcomes is also a 
source of uncertainty.  

Marchau et al. (2019) provide a classification scheme (Figure 3) for the level of uncertainty in each of 

the domains in the framework for the policy analysis.  

 
Figure 3 Levels of uncertainty in relation to the domains in the framework for the policy analysis process from Marchau et al. 
(2019). 
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The frameworks summarized above all stem from the need to understand various aspects of 

uncertainty in analysis- and decision situations characterized by deep uncertainty. As mentioned in 

Section 2.1.2, other concepts than deep uncertainty, such as VUCA and global/local uncertainty, have 

emerged based on the need to manage the challenge of multiple plausible futures. VUCA has 

primarily been discussed and applied within the business literature and refers to management 

situations characterized by four distinct types of challenges, volatility, uncertainty, complexity and 

ambiguity (Bennett & Lemoine, 2014). Maier et al. (2016) summarize the four terms as follows. 

Volatility refers to a deviation from an expected mean or due to extreme unpredictable events. 

Uncertainty refers to the unknown range of inputs and the impact of external events. Complexity 

refers to issues with many interconnected variables which means that the change in one variable 

(e.g., due to an intervention) can result in unpredictable impacts, and possibly also changing the 

structure or magnitude of relations in the system. Ambiguity relates to when different stakeholders 

hold different beliefs about the causal structure of a system. Bennet and Lemoine (2014) describe 

that the difference between complexity and ambiguity mainly has to do with the nature and degree 

of uncertainty for a situation: complexity is a result of a system with many interconnected parts 

which might make it overwhelming, but not impossible, to analyze (compare with epistemological 

uncertainty); ambiguity refers to situations where causal relationships are completely unclear 

(compare with ontological uncertainty). The concept of global and local uncertainty was developed 

to support flexible electricity generation infrastructure planning (Mejia-Giraldo & McCalley, 2014). 

Global uncertainty is uncertainty about trends that can yield distinctly different future states of the 

world (i.e. multiplicity of futures) while local uncertainty is due to the imperfect knowledge of the 

exact realization for a specific plausible different future state of the world. Global uncertainties can 

thus be seen as uncertainties that generate context uncertainty at Level 3 and Level 4 in Figure 3  

while local uncertainty yields context uncertainty at Level 2 in Figure 3. Maier et al. (2016) stress the 

need to combine analysis of both global and local uncertainty and therefore highlights that many 

problems include both deep and shallow uncertainty. 

2.1.4 Inherent uncertainty in policy issues and complex sociotechnical systems 

The scientific study of societal systems and the use of science to inform policy decisions is a domain 

where the role of uncertainty often is central. It has for a relatively long period of time been 

acknowledged that applying scientific methods to policy problems and analysis of complex societal 

systems is associated with uncertainty and inherent limitations due to the different nature of policy 

problems and conventional scientific problems, for instance in the natural sciences. The physicist AM 

Weinberg (Weinberg, 1972) argued that many policy issues related to the interactions between 

society and science, or technology are of a kind that they can be phrased as scientific questions, but 

they cannot be unambiguously answered by science. Weinberg puts it that these questions transcend 

science, they are “trans-scientific questions”. van Asselt (2000) outlines four types of trans-scientific 

questions based on Weinberg (1972), i) questions that would require impracticably expensive or 

lengthy, or even impossible experiments, for instance, determining the probability of extremely 

improbable events; ii) questions referring to human behavior since it does not allow for strict 

rationalization and the human creativity and adaptability is uncertain; iii) questions about the future 

since uncertainty always arise when extrapolating into new and unknown circumstances; and iv) 

questions that involve value judgements since they involve subjective moral judgements. Weinberg’s 

specification of trans-scientific questions illustrates that there are multiple types of uncertainties 

associated for policy matters on the relationships between technology and society.  
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Another influential notion for describing the challenges for science to deal with many policy issues is 

the concept of wicked problems which is used to denote the complex and poorly defined nature of 

many policy issues which means that they are fundamentally different from the well-defined 

problems that natural sciences typically deal with (Rittel & Webber, 1973). Wicked problems are 

characterized by that they lack a definitive, comprehensive, and objective problem formulation or 

solution, making it difficult to establish clear boundaries or parameters for the issue at hand. 

Therefore, it is nearly impossible to determine when a solution to a wicked problem has been found, 

as there are no universally accepted criteria for success. This further implies that solutions to wicked 

problems cannot be evaluated as true or false, but just good or bad based on subjective judgements 

and oftentimes, several stakeholders have valid rights to judge the solution based on their varying 

specific subjective perspectives. 

 

The sheer scope and complexity of modern societal systems is highlighted as another reason to why 

policymakers and decision makers often face intractable uncertainties (Agustdinata, 2008; van Asselt, 

2000). van Asselt (2000) classifies a problem as complex if it has the following three characteristics. 

• Multi-problem. The problem is part of a tangled web of related problems rather than being a 
single well-isolated problem. 

• Multi-dimensional. The problem is located across, or intersects several disciplines for 
instance by having economic, environmental, social, and political aspects. 

• Multi-scale. The underlying processes interact over various scales, i.e., local, regional, 
national global, and at different temporal scales.  

Problems of this kind are challenging for two reasons: first they tend to involve taking into 

consideration the perspectives of many different actors with conflicting goals and perspectives, and 

second the phenomena, e.g., transport, climate change or technical innovation, and their underlying 

processes, are not fully understood.  

2.2 How can (deep) uncertainty be accounted for in model-
based policy analysis? 

2.2.1 The challenge of decision making under deep uncertainty 

Making decisions for the future requires the anticipation of change. More specifically, it can be 

thought of as the challenge of making short-term decisions that may affect, or be affected by, long-

term events. Lempert, Popper and Bankes (2003) introduced the concept of robust decision making 

as a new approach for long-term quantitative policy analysis (LTPA), or any decision making situation 

characterized by deep uncertainty. In this context, long-term policy making refers to when short-

term policy options are affected by events that may happen 30 years or longer into the future. 

Lempert, Popper and Bankes (2003) claim that even though humans have for long times used various 

approaches for thinking about the long-term future and the consequences of their actions on it, 

these approaches suffer from fundamental shortcomings in dealing with deep uncertainty as 

outlined below. 

• Narratives. Humans have used narratives about the future for many centuries and they 
provide powerful means for imagining how the future may look like. Narratives have been 
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used both to explain the historical reasons for why the world is as it is, but also as a way to 
deal with anxiety about the future by crafting myths about future events that could help 
people prepare themselves before they happen. Often, narratives rely on learnings from 
history for motivating a prediction about the future. This could be done by drawing parallels 
between a specific period in history and the current or anticipated future settings3. Another 
approach is to identify grand designs, patterns or dynamics of history and then apply them as 
tools for a prediction about how the future will play out4. For LTPA, narratives can fill a 
function of confronting people with the long-term future by imagining how it may look like 
and linking it to near term societal choices. However, the obvious drawback of narratives is 
that they are often wrong about what will happen in the future. Narratives tend to discern 
the multiplicity of futures that are plausible and most often, the aim is to affect the present 
rather than providing a guide to the future.  

• Group narratives such as Delphi, and Foresight. The Delphi method was developed by RAND 
in the 1950s to synthesize knowledge from experts from various knowledge areas and 
converge toward one or a set of paths for the future for the subject being under study. In this 
sense, Delphi is a method for seeking consensus among a group of diverse experts on a (set 
of) future scenarios. However, there is little reason for expecting these scenarios as reliable 
estimates of the future. Foresight is a similar method but with a focus on the deliberations 
when considering future developments rather than the outcome of the process, which is the 
focus of the Delphi method. Often, the focus is primarily on creating arenas for different 
stakeholders to form communication among each other and jointly envision what may lay 
ahead in the future. The authors stress that foresight struggle with the multiplicity of 
plausible futures and that foresight processes tend to lead to efforts to reduce the number of 
irreducible uncertainties to contain the complexity of foreseeing the future.  

• Simulation modelling. Simulations models can fill an important role for LTPA since it helps 
systematically analyze how components in a system change over time as they interact. 
Typically, simulation models use a mathematical representation of processes of interactions 
between components in a system. The mathematical expressions can be designed by fitting 
them to historical data of such processes or through theoretical understandings of the 
system, or a combination of both. Simulation models thereby can combine historical 
information with assumptions about key causal relationships to study how a system may 
develop over time. However, the assumptions about the structure and dynamics of systems 
are a source of deep uncertainty and in order to provide value to LTPA, there is a need to 
utilize simulation models within a formal decision analysis process.  

• Decision analysis. Decision analysis frameworks seeks to confront that humans’ ability for 
reasoning about probabilities and making assessments about uncertain futures is limited and 
suffers from multiple forms of bias. Conventional decision theory is based on a “predict-then-
act” framework. First, the decision options are outlined along with their expected outcomes 
expressed as the option’s utility. In case of uncertainty about the consequences, the 
consequences are weighted by their likelihood and the option that maximizes the expected 
utility is chosen. In situations where the available options, their consequences and likelihood 
can be comprehensibly and accurately estimated, this framework is a logical consistent basis 
for making decisions. However, these key assumptions do not hold under conditions of deep 
uncertainty since it, by definition, means that it is not possible to enumerate all possible 

 
3 Lempert et al. (2003) gives the example of an analysis by Dewar (1998) which reasoned about the social effects of the internet by 

comparing it to the historical impacts of the printing press.  

4 Some of the examples on this use of history provided by Lempert et al. (2003) include Friedrich Hegel’s concept of dialectics and the 

subsequent works by Karl Marx and Friedrich Engels outlining the dynamics of class struggle and the theory of historical materialism, 

Nikolai Kondratieff’s ideas about long economic waves, and Herman Kahn’s (Kahn et al., 1976) work with crafting a future scenario based 

on a combination of quantitative and qualitative arguments.   
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future or reliably assign a likelihood to each of them. Also, decision analysis seeks to identify 
one optimal choice which performs best against a given set of likelihoods, which is not 
necessarily a good criterion for making long-term policy decisions. 

• Scenario-based planning. All the above approaches are limited by the challenge of 
multiplicity of futures. Scenario planning is intended to grapple with precisely that challenge. 
Scenarios can help understand that the future might be vastly different from the present and 
support decision makers to choose strategies that are beneficial for different futures. Instead 
of one narrative, multiple complementary but fundamentally different stories are 
constructed to span a wide range of futures. A small set, typically three or four, scenarios are 
crafted that should be plausible and logically self-consistent. These scenarios can be seen as 
more or less likely to occur, but no scenario should be impossible. Scenarios can help 
organizations to better understand risk in relation to decisions and what it takes to reach a 
certain objective in different futures. However, there are drawbacks also for this approach. 
First, crafting a small number of scenarios to span a highly complex future will ultimately be 
an arbitrary choice and scenario planning will by default miss many important futures. 
Therefore, the logic used for selecting and sorting scenario may bias conclusions drawn from 
them. For instance, humans tend to put more emphasis on scenarios driven by one drastic 
event instead of the slow compounding effects of many gradual changes even though the 
effects may be bigger for the latter type. Second, scenario planning offers limited support for 
the systematic of comparison of alternative policy choices across scenarios and the design of 
policies based on the scenarios.  

Lempert, Popper and Bankes (2003) argue that the above mentioned approaches each have specific 

strengths that should be combined when developing new, better methods for LTPA. However, these 

methods all struggle with a similar challenge, namely the multiplicity of plausible futures. Therefore, 

better methods for LTPA must not only build on the strengths of these methods, but also find ways of 

managing the problem of the multiplicity of futures regardless of the subject matter and Robust 

Decision Making (RDM) can be seen as an effort to address this issue. 

 

The need to adapt planning approaches to account for the multiplicity of futures is addressed also by 

Maier et al. (2016). They argue that in order to use model-based quantitative policy analysis in 

situations where deep uncertainty is present in the form that multiple futures are plausible, there are 

three main approaches that should be combined: 

• Uncertainty should be described with the aid of scenarios that represent various distinct 
plausible futures that represent a joint trajectory rather than only as probability distributions 
of input parameters. Also, both global and local uncertainty should be accounted for, see 
Figure 4. 

• System performance should be measured using metrics for insensitivity, i.e., robustness, of 
the performance to changes in future conditions rather than measures focused on the 
performance in a single forecast.  

• When feasible, adaptive strategies that can be flexibly adjusted when the conditions change 
should be designed and implemented rather than relying on fixed strategies. 
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Figure 4 Different paradigms for estimating future system states. a) point prediction, b) point prediction with quantification 
of uncertainty, c) outlining multiple plausible futures, d) combining b and c to account for different types of uncertainty. 
Figure from Maier et al. (2016). 

2.2.2 Introduction to Decision making under deep uncertainty (DMDU) 

Decision Making Under Deep Uncertainty (DMDU) is a broad framework that aims to help decision-

makers navigate complex and uncertain problems by identifying strategies that are robust and 

adaptive in the face of uncertainties that are difficult to quantify or predict (Marchau et al., 2019). 

DMDU is an alternative decision-making approach to the conventional “predict-then-act” approach, 

in which a single, or small set of, forecasts are used as a basis for policy design and analysis (Lempert 

et al., 2003). The DMDU approach is also distinct from probabilistic forecasting, which uses 

probability distributions to model which futures that are more likely than others to occur. In 

conditions of deep uncertainty, using specific probability distribution for modeling uncertain scenario 

or model parameters represents just another set of assumptions, but instead of parameter point-

estimates as is the case for conventional forecasts, these are assumptions about the underlying 

probability distributions (Lempert et al., 2022). One way of describing DMDU in contrast to 

forecasting is that it focuses on the decision alternatives and how uncertainty affects their impacts:  

Which assumptions would I need to believe will hold true to recommend one course of 

short-term actions over another? (Lempert et al., 2022, p. iv) 
 

DMDU is based on three key ideas: exploratory modelling, adaptive planning and decision support 

(Kwakkel & Haasnoot, 2019). Exploratory modelling is the use of computational scenario approaches 

to explore the consequences of various uncertainties and is used to support human reasoning and 

decision-making based on a comprehensive set of scenarios, allowing for the analysis of systematic 

regularities among subsets of the full set of experiments. The use of models is necessary because 

human reasoning with respect to complex uncertain systems is intrinsically insufficient, as mental 

models often ignore feedback, fail to account for time delays, and are insensitive to nonlinearity. If 

appropriate models are available, they can help decision makers to alleviate these shortcomings. 

Exploratory modelling uses computational experimentation to overcome the limitations of using 

computer models for decision support in situations characterized by deep uncertainty by analyzing 

how the system would behave under a large set of uncertain assumption about the system and its 

inputs. Adaptive planning means that plans are designed to be adaptable over time in response to 

how the future unfolds, with the flexibility of the plan being a key means of achieving decision 
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robustness. Adaptive plans require exploring a wide variety of futures during the plan design, gaining 

insight into which actions are best suited to which futures, and monitoring signals from the unfolding 

future to ensure the timely implementation of appropriate actions. Unlike planned adaptation, which 

entails changes occurring at predetermined moments, adaptive planning involves a paradigm shift 

from planning in time to planning conditional on observed developments. Decision support involves 

stress testing candidate policy decisions over a wide range of uncertainties, characterizing the 

uncertainties by their effect on the decision, and enabling a constructive learning process among 

stakeholders and analysts. The intention is to support the decision process of multiple actors coming 

to an agreement through an iterative approach that facilitates learning across alternative framings of 

the problem, stakeholder preferences, and trade-offs (Kasprzyk et al., 2013; Singh et al., 2015). 

 

The use of computer models is paramount for DMDU as it enables the exploration of different 

scenarios, evaluating policy options, and identifying robust and adaptive strategies. To understand 

the role of computer models in DMDU, the distinction between scientific models and policy models is 

an important aspect as it is typically policy models that are used for DMDU. Walker et al. (2013) 

describe the differences between them as follows. The purpose with scientific models is to achieve a 

better understanding of a clearly delimited and well-defined system. For these models, typically the 

model’s “goodness” and validity are evaluated by its ability to closely match (measurements of) the 

real system. Policy models are used to provide insights to policymakers about future problem 

situations that can support decisions. A policy model is used to test and experiment with different 

policies and see how it may affect the system in different future scenarios without having to 

implement the policies in the real world. An important requirement for policy models is that they 

require rather short run-times and high flexibility so that multiple policy options can be evaluated 

against multiple future scenarios. When developing policy models, there is a need to balance model 

flexibility and run time with model completeness (including relevant mechanisms and policy 

components) and model credibility (level of detail and model validity). Also, policy models tend to 

require several different types of outcome indicators. One way to develop a policy model is to use 

meta-models, which is a model of a model, intended to replicate the behavior of large, complex 

models but with lower resolution. See Lemp et al. (2021) for an example from the transportation 

domain of how meta-models can be developed and applied for DMDU.  

 

However, it is crucial to recognize the inherent limitations and potential drawbacks of using 

computer models for decision support in situations characterized by deep uncertainty. Lempert, 

Popper, and Bankes (2003) emphasize the challenge of defining the system structure in terms of the 

causal relationships between model variables that determines the system's behavior, a priori, in 

cases of presence of deep uncertainty. The World 3 model, used by Meadows and the Club of Rome 

(1972), is mentioned by Lempert, Popper, and Bankes (2003) as an example of a long-term simulation 

model that allegedly led to erroneous conclusions because of incorrect assumptions about the 

strength and structure of central causal relationships within the model. Lempert, Popper, and Bankes 

(2003) reason that agent-based models may offer a promising alternative, as they allow for emergent 

macroscopic behavior without a priori specification. This means that the model can endogenously 

simulate structural changes within a system due to interactions between agents, which the model 

developer might not have anticipated or considered. However, the rules governing the behavior of 

agents still need to be specified, and thus remain as a source of deep uncertainty. Also, agent-based 

models often require detailed representations of the environment the agents are interacting within. 
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This could in a transport context relate to the detailed road network design, signaling times etc. 

Lempert, Popper, and Bankes (2003) argue that for any model to be useful for decision-making under 

deep uncertainty, it must be employed within a formalized decision-making process that accounts for 

the many plausible model specifications in terms of causal relationships or the rules governing agents 

that deep uncertainty entails. 

 

The literature on approaches for dealing with deep uncertainty in model-based policy analysis has 

developed substantially during the last decade. One important development is the emergence of 

DMDU as an umbrella term, and a distinct research field, combining existing and emerging DMDU 

approaches. This seems to have sparked research towards a broader and more general 

understanding of DMDU and how its various tools and approaches differ, when and how they are 

complementary and the appropriateness of different approaches for different types of policy 

problems and domains. DMDU approaches are particularly relevant to use when three conditions are 

met, according to (Marchau et al., 2019). The conditions for when DMDU is appropriate is illustrated 

in Figure 5. First, the problem should be characterized by deep uncertainty, in particular related to 

the external factors affecting the system. Second, there are many policy options, for instance due to 

that there are many policy levers that can be combined to design distinct policy options. And last, 

that the system complexity makes it hard for analysts to intuitively assess the impacts of policies to 

the outcomes of interest. When these conditions are not met, other approaches might be more 

appropriate. For instance, short-term policy analysis may be more effective in cases where the 

uncertainty is rather well characterized, and scenario planning in cases where the complexity is not 

too high. 

 
Figure 5 Figure by Marchau et al. (2019) illustrating for which situations DMDU approaches are relevant.  

 

DMDU encompasses a variety of methods and approaches designed to address deep uncertainties in 

policy analysis and decision support. It is beyond the scope of this report to review and summarize all 

these methods. Instead, the interested reader is referred to (Kwakkel & Haasnoot, 2019) which 

summarizes a number of tools and approaches for supporting DMDU along with key references for 

each one of the following: 

• Assumption-Based Planning 

• Robust Decision Making (RDM) 



REPORT  2024-02-01 

MUST: Phase 1 Albin Engholm & Ida Kristoffersson 

 

27 

 

• Many-Objective Robust Decision Making 

• Dynamic Adaptive Planning 

• Dynamic Adaptive Policy Pathways 

• Info-Gap Decision Theory 

• Engineering Options Analysis 

• Decision Scaling 

• Scenario Discovery 

• Adaptation Tipping Points 

• Many-Objective Robust Optimization 

Several of these tools and approaches are complementary to each other and can be combined or 

integrated. Kwakkel and Haasnoot (2019) suggest to consider the nature of the problem at hand and 

choosing an appropriate combination of DMDU tools that fits the problem rather than choosing 

between distinct approaches (e.g. RDM vs DAP).  

To better understand similarities and differences between the previously proposed DMDU tools and 

approaches, Kwakkel and Haasnoot (2019), proposes a taxonomy that covers five components of 

DMDU upon which the various DMDU approaches are mapped, see Table 1 for an overview of the 

components in the taxonomy. 

 
Table 2 Taxonomy of components of approaches for DMDU used by Kwakkel and Haasnoot (2019). 

Component Examples of approach 
Generation of policy alternatives • Protective adaptivity: protect basic plan against 

contingencies 

• Dynamic adaptivity: sequencing alternatives conditional on 
observed future 

Generation of scenarios 
 

• Exploration: global or local sampling 

• Search: optimization 

• Pre-specified: expert opinion, standardized 
Robustness metrics • Regret: comparing alternatives 

• Satisficing: individual alternatives 
Vulnerability analysis techniques 
 

• Subspace partitioning: Scenario discovery 

• Sensitivity analysis: ranking of factors 

 

There are several published case studies applying and discussing DMDU methods for various types of 

problems and domains in the scientific literature. A review of DMDU case studies published up until 

February 2020 by Stanton and Roelich (2021) identified 36 published studies. Most of these case 

studies dealt with water-related policy problems such as flood management and water supply issues, 

and six studies concerned transport problems. Their review showed that 80% of all case studies were 

prospective, meaning that they demonstrate how a DMDU method could be applied, while only 20% 

were cases that had been implemented or commissioned directly by policy makers. According to 

Stanton and Roelich (2021), this high share of prospective studies suggests that the DMDU literature 

so far has largely focused on developing better DMDU tools, with less focus on practical 

implementation. In addition, Stanton and Roelich (2021) propose that DMDU studies have so far not 

fully taken into account the decision making context on the institutional, organization and individual 

level. They further claim that many case studies do not clearly and explicitly argue why the specific 
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DMDU approach was more suitable to apply than a more conventional policy analysis method. There 

have been efforts to map when to apply DMDU-related methods, and in particular RDM, depending 

on the type of policy problem and decision context within the area of climate adaptation. Dittrich et 

al. (2016) review RDM, real options analysis, portfolio analysis, no/low regret options and measures 

for reduced decision-making time horizons. They conclude that deep uncertainty indeed creates a 

need for more robust planning methods, but also that they come with methodological challenges, for 

instance mapping out the scenario space, and may also be complex and require different know-how 

and data than conventional appraisal methods. RDM specifically is presented as a resource intensive 

method which is best suited to apply for large projects, where there is deep uncertainty and little 

flexibility in altering the decision once taken.  

 

Finally, it is noted that the concept of applying DMDU to support policy analysis has clear conceptual 

links to the area of future studies which have similar, and partly overlapping, frameworks and tools 

for dealing with different levels of uncertainty for generating insight into future developments (Van 

Dorsser et al., 2020). 

2.2.3 Exploratory Modelling and Analysis (EMA) and Robust decision making RDM 

This section outlines two DMDU approaches that are in focus for the MUST project, namely Robust 

Decision Making (RDM) and Exploratory Modelling and Analysis (EMA). RDM and EMA are 

complementary approaches that fall under the umbrella of DMDU5. Both EMA and RDM share the 

common goal of helping decision-makers understand the potential consequences of different policy 

interventions under deep uncertainty and support the identification of robust and adaptive 

strategies. 

 

RDM focuses on identifying decision strategies that perform well across a wide range of future 

conditions and are robust to uncertainty. It is an iterative, simulation-based approach that involves 

exploring the space of future uncertainties, evaluating the performance of decision options under 

different scenarios, and identifying robust strategies that meet specific performance criteria or 

objectives. This approach requires confronting a commonly held perspective, namely that predictions 

are necessary precursors to effective action (Lempert et al., 2003, p. 19). Or as put by Lempert et al. 

(2013), RDM is intended as a method to make good decisions without predictions. Typically, it 

involves the following four steps, which are intended to be performed in an iterative manner 

together with stakeholders and policy makers (Eker & Kwakkel, 2018; Kasprzyk et al., 2013).   

1. Problem formulation. Typically the policy problem is formulated with the help of the XLMR 
framework (see Figure 6). 

2. Generation of policy alternatives. In this step, a set of candidate policies, i.e. combinations of 
policy levers, are specified. The generation of policy alternatives can be done prior to the 
analysis, i.e. that there are pre-developed policies which robustness will be analyzed with 
RDM. Alternatively, policy alternatives can be generated within the RDM process by using 
optimizations to derive Pareto-optimal candidate policies based on the available policy levers. 
This optimization-based approach is further explained in the sub-section “Directed search” 
below.  

 
5 Note that EMA is not listed as a distinct DMDU approach or tool by Kwakkel and Hassnoot (2019). However, EMA can be understood as 

the use of various techniques for analysing uncertain systems which is a fundamental underlying approach within robust decision making 

and a number of other DMDU approaches. 



REPORT  2024-02-01 

MUST: Phase 1 Albin Engholm & Ida Kristoffersson 

 

29 

 

3. Uncertainty analysis. The candidate policies’ performance is evaluated over a large set of 
plausible scenarios. These scenarios are typically generated by systematic sampling of the 
uncertainty space spanned by the ranges of the X parameters. With use of a simulation model 
of the system, a model run is performed for each of the policy alternative in each of the 
scenarios. The robustness of candidate polices are evaluated using a robustness metrics 
(Kwakkel et al., 2016) and a small set of the candidate solutions with high robustness are 
chosen. 

4. Scenario discovery. Although the policies selected in the previous step are robust according to 
the specified robustness metrics, there may still be certain types of scenarios where the policy 
fails to generate a desired outcome. The vulnerability analysis is used to identify scenario 
conditions under which the policy fails to meet a pre-specified performance criterion. Scenario 
discovery uses cluster analysis on the database of model runs generated in the previous step 
to identify certain combination of inputs in which the policy fails to meet the performance 
criterion. Often, the vulnerability analysis is done with the use of scenario discovery, for 
instance using the patient rule induction method (PRIM) (Bryant & Lempert, 2010; Friedman & 
Fisher, 1999). PRIM identifies hyper-rectangular subspaces of the input data.  

Steps 3 and 4 of RDM, and step 2 in case optimization is used, requires the use of various forms of 

data analysis, modeling, or algorithms. There are different methods and tools that can be used for 

each of the step and choosing which one to use, and how to best apply them, requires careful 

considerations based on the specific nature of the policy problem, data and model (Kwakkel & 

Haasnoot, 2019). For instance, the uncertainty analysis requires carefully selecting what sampling 

strategy to use based on the analysts understanding of the various parameter uncertainties, and with 

regards to the computational complexity of the model. Also, robustness metrics must be carefully 

chosen (McPhail et al., 2018). Similarly, when applying these different tools and algorithms there is a 

need to carefully consider how to apply them to the specific problem and whether any modifications 

are required. For instance, when applying PRIM for step 4, preprocessing of the experiment database 

using orthogonal rotations (for instance using principal component analysis) might be required to 

more effectively identify vulnerabilities with PRIM’s hyper-rectangular input subspaces (Dalal et al., 

2013). There are also various extensions of PRIM, for instance to better manage heterogenous input 

parameters and multinomial outputs (instead of binary, as in the case of a Boolean indicating 

whether a performance target is met or not) (Kwakkel & Jaxa-Rozen, 2016). Applying optimization for 

step 2 also involves a number of sensitive choices related to specifying the optimization problem, 

choosing what type of optimization approach and specific algorithm or solver to use, and often also 

selection of so called hyperparameters, i.e. the parameters that govern the behavior of heuristic 

optimization algorithms (Kasprzyk et al., 2013). 

 

The intended outcome of the RDM process is the identification of policy alternatives with high 

robustness and a clear understanding of the vulnerabilities of these robust policy alternatives. Also, it 

has been proposed that when RDM is performed iteratively along with relevant stakeholders, it can 

serve as a learning process that helps: refine the understanding of the policy problem and system 

under study; generate new and better performing policy alternatives; create a better understanding 

of various tradeoffs involved (Kasprzyk et al., 2013).  

 

EMA is, compared to RDM, a more general approach that involves creating, exploring, and analyzing 

a large number of alternative policies, models or scenarios to understand the impact of uncertainties 

on system behavior and decision outcomes (Kwakkel & Pruyt, 2013). EMA utilizes several methods 
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and techniques, such as sampling techniques, sensitivity analysis, uncertainty analysis, scenario 

discovery, and (multi-objective) optimization, which can be applied to various types of system 

analysis and decision problems. The concept of exploratory modelling was proposed by Bankes 

(1993) who distinguished exploratory modelling from predictive (or consolidating) modelling. The 

goal of predictive modelling is to produce an accurate prediction of the system's behavior for a given 

set of inputs by incorporating known facts into a single unifying model of the system. In contrast, 

EMA is used to generate one or a set of plausible models that are consistent with available data and 

knowledge, scenarios, and policy options for the system of interest. The space spanned by scenarios, 

and policies is then searched through or evaluated using optimization algorithms and sampling 

techniques and inferences are made about how scenarios, policies and model formulation affect the 

outcomes of interest. In EMA, a single instance drawn from the set is not a prediction but rather a 

what-if experiment that reveals how the real-world system would behave if the specific assumptions 

about the various uncertainties encapsulated in the specific model and scenarios were correct.  

EMA problems are often structured using the so called XLRM framework (Kwakkel, 2017), see Figure 

6. 

• X: external factors are uncertain factors that are uncontrollable for the considered actor. A 
specific parameter set of external factors constitute a scenario 

• L: policy levers are the decision variables the considered actor has available to influence the 
system. A specific parameter set of policy levers constitute a policy. 

• R: relationships in the system which collectively constitute a model of the system. 

• M: performance metrics are the outcomes of interest for the system, i.e., the model outputs 
of interest.  

A unique combination of a scenario and policy comprises an experiment.   

 
Figure 6 The XLMR framework (Lempert et al., 2003), figure based on Kwakkel (2017). 

Within this framework, EMA can be understood as an approach for analyzing how regions of the 

uncertainty space spanned by X and R, and/or the decision space spanned by L map to the outcome 

space, spanned by M. In some cases, it is also of interest to study uncertain parameters within the 

system model (R). Then, the analysis includes an additional parameter set for the uncertain model 

parameters. Also, in cases when it is not clear what type of model is appropriate for representing the 

system, the analysis can be performed over an ensemble of models (a set of R’s). Then, the same 

experiments are conducted for each of the model in the model ensemble.  

 

In EMA, a distinction can be made between two types of applications: open exploration and directed 

search. Open exploration is when the uncertainty space, and/or the decision space is systematically 

sampled. Directed search is when the uncertainty space or decision space is searched using 
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optimization techniques. These approaches are often complementary when performing policy 

analysis with DMDU. For instance, directed search might be used to identify promising candidate 

strategies and open exploration can be used to test how these strategies perform over a large set of 

scenarios. The two approaches, along with examples of specific tools and analysis methods for each 

of these are summarized in the subsequent sections. 

Open exploration 

Open exploration can be used for various purposes, some examples are: 

• Span the outcome space. For uncertain systems, it is often useful to understand what ranges 
of outcomes are plausible given the plausible combinations of uncertain inputs, and policy 
options at hand. By sampling the model over the uncertainty space, for instance using 
Monte-Carlo or Latin hypercube sampling, and if relevant also over the decision space, the 
range of plausible outcomes can be estimated. 

• Comparing candidate policies. In cases where there are pre-specified policies that needs to 
be evaluated, open exploration can be used to analyze how these policies perform over a 
large set of scenarios spanning an uncertain future.  

• Sensitivity and uncertainty analysis. Open exploration can be used to understand the 
influence of the various uncertainties in the system. There are several techniques for doing 
this, for instance various types of feature scoring. Also, global sensitivity analysis can be 
performed, for instance through more advanced sampling methods, such as Sobol sampling 
which allows the influence of both direct- and interaction effects to be quantified (Pianosi et 
al., 2016). 

• Vulnerability analysis. It is important to know under what circumstances a policy fails (or 
succeeds) in meeting its intended outcomes. This means to identify regions of the input 
space that are highly predictive of leading to the policy targets not being met (or the 
opposite, depending on how the analysis is set up. Methods for such analysis are called 
scenario discovery (Bryant & Lempert, 2010). 

• Identifying policy-relevant scenarios. There is sometimes a need to use a smaller set of 
scenarios for communication purposes, for more in-depth analysis or when practical 
constraints in the policy analysis process limits the number of scenarios. Carlsen et al. (2016) 
propose a method to choose a small set of policy-relevant scenarios by combining a 
vulnerability-based approach with a diversity-based approach, i.e., scenarios that are highly 
predictive of a policy to fail and that are different to each other in terms of their inputs 
and/or outputs and therefore spans a large portion of the input and/or output space. Eker 
and Kwakkel (2018) propose a similar method and shows how it can be incorporated into the 
many objective robust decision making context 

Directed search 

Directed search is the use of mathematical optimization to search the decision space or the 

uncertainty space to identify sets of policies or scenarios. When the uncertainty space is searched, a 

typical application is to identify the scenario with worst-case (or best-case) performance of a given 

policy (Halim et al., 2016).  

 

However, more commonly, directed search is applied to search the decision space to identify policies 

that perform well given a certain set of criteria and constraints. This use of directed search is applied 

in RDM when policy alternatives are identified by the help of optimization. Often, there are multiple 
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criteria that are not combined into a joint objective function. This may for instance be due to 

uncertainty in valuation of outcomes (see 2.1.3). A mathematical formulation of an optimization 

problem with multiple objectives is outlined below, based on the formulation and notation provided 

in Kasprzyk et al. (2013).  

minimize 𝐹(𝑙) = (𝑓1, 𝑓2, … 𝑓𝑝), ∀𝑙 ∈ L (1) 

Subject to: 

𝑐𝑖(𝑙) = 0 ∀𝑖 ∈ [1, q] (2) 

𝑑𝑗(𝑙) ≤ 0 ∀𝑗 ∈ [1, r] (3)  

The problem is to minimize the vector 𝐹(𝑙), where 𝑙 is a vector of levers (i.e., decision variables) in 

the decision space, 𝐿 (Equation 1). The levers can be represented as real-valued, integer or 

categorical variables. There could also be 𝑞 equality constraints 𝑐𝑖 (equation 2) and 𝑟 inequality 

constraints 𝑑𝑗  (equation 3). For a solution to be feasible, these constraints need to be met. By solving 

the optimization problem, the set of non-dominated solutions is identified. A non-dominated 

solution is a solution that cannot be outperformed by any other solution across all objectives, 

representing a balanced trade-off among these objectives. This concept is closely related to the 

concept of Pareto optimality. In a Pareto-optimal set, each solution represents a unique trade-off 

among the objectives, and no solution in the set can be improved upon without making at least one 

objective worse. The collection of non-dominated solutions forms the Pareto front, which represents 

the optimal trade-offs between the objectives. For a mathematically precise definition of non-

dominated solutions, see Kasprzyk et al. (2013) or, for a broader background, Coello, Lamont, and 

Van Veldhuisen (2007). 

 

Due to the complex search space and non-linearity of the problems and systems typically being 

studied using EMA, the approach for solving the multi-objective optimization6 problem typically relies 

on multi-objective evolutionary algorithms (MOEA) (Eker & Kwakkel, 2018; Kasprzyk et al., 2013). A 

formal mathematical description of such algorithms is not provided in this report, but is for the 

interested reader available in Coello, Lamont, and Van Veldhuisen (2007). In short, such algorithms 

typically consist of the following steps. 

1. Initialization: A population of candidate solutions, i.e., a feasible point in the search space, 
is randomly generated. 

2. Evaluation: The fitness of each candidate solution is evaluated by calculating the values 
for each objective function and determining the dominance relationships among the 
solutions. 

3. Selection: A subset of the solution population is chosen to create offspring for the next 
generation. Selection is typically based on the fitness of the solutions.  

4. Variation: Offspring solutions are generated through so-called genetic operators, for 
instance by crossover (recombination) and mutation. The purpose of this step is to 
explore the search space and maintain diversity in the population. 

5. Replacement: The offspring solutions are added to the population, and some of the 
existing solutions may be removed to maintain a fixed population size. The process of 
selecting which solutions to remove can be based on fitness, diversity, or a combination of 

 
6 Sometimes, the term many-objective optimization is used. To the understanding of the authors of this report, in the context of EMA 

many-objective optimization can be understood as an extension of multi-objective optimization for problems with more than a few 

objectives. For simplicty, the term multi-objective is used throughout this report although some of the references refer to many-objective.  
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both. Maintaining diversity along the Pareto front is crucial to ensure a good 
representation of the trade-offs among the objectives. 

6. Termination: The algorithm iterates through steps 2-5 for a predefined number of 
generations or until a stopping criterion is met, such as reaching a certain level of 
convergence according to some specified convergence metric. 

Many Objective Robust Decision Making (MORDM) and other RDM variants 

A common use of directed search is within various forms of RDM applications (Kwakkel & Haasnoot, 

2019). In its original conception, RDM, focused on evaluating the robustness and vulnerabilities of 

pre-generated policy alternatives (Lempert et al., 2003). Since then, multiple approaches for using 

directed search to generate policy alternatives within the RDM framework have been developed. 

Figure 7 provides an overview of these approaches with a focus on how the steps of Generating 

policy alternatives and Robustness analysis are performed. Kasprzyk et al. (2013) introduced Many 

Objective Robust Decision Making (MORDM) in which instead of using pre-specified policies, MOEA is 

used to generate a set of Pareto-optimal policies based on a reference scenario. These policies are 

then used as candidate solutions which then are subjected to robustness, uncertainty, and 

vulnerability analyses in the same way as conventional RDM. The intention with using MOEA for the 

generation of policy alternatives is to alleviate some of the challenges and potential biases that 

decision makers face in situations where there are many possible policy alternatives, multiple objects 

to consider simultaneously, and deep uncertainty about the future (Kasprzyk et al., 2013; Singh et al., 

2015). However, a clear limitation of this specific approach is that the identified policy alternatives 

are scenario dependent as they are generated for a single reference scenario. Therefore, these 

policies are such that the perform Pareto-optimal in the reference scenario and the subsequent 

robustness and vulnerability analysis helps identify policies from this set that perform well over a 

large number of plausible scenarios relative to other identified alternatives. Naturally, this may limit 

the potential for identifying robust policies since deep uncertainty is disregarded when generating 

the policy alternatives (Eker & Kwakkel, 2018). To face this challenge, approaches where multiple 

scenarios are used during the generation of alternatives have been developed. These approaches are 

denoted as Multi-scenario MORDM in Figure 7.   

 

Watson and Kasprzyk (2017) perform policy optimization on multiple scenarios that are identified 

through scenario discovery during the vulnerability analysis of the candidate policies identified for 

the reference scenario. This showed that the policy performance is highly dependent on what 

scenario are used to identify them using MOEA.  Eker and Kwakkel (2018) proposed another method 

for selecting what scenarios to use for generating policy alternatives in multi-scenario MORDM. The 

idea is to select scenarios that are policy relevant and diverse. Policy relevance is defined as a 

problem-specific concept that relate to the decision makers concerns but is typically scenarios with 

poor performance of the outcome metrics. Diversity means that the set of scenarios are different in 

terms of their location in the uncertainty or outcome space. More specifically, the diversity metric 

proposed by Carlsen et al. (2016) is used where diversity is defined as a weighted sum of the 

minimum and mean pairwise average Manhattan distances for the scenarios in the scenario set. The 

scenario selection is done by first generating many scenarios using random sampling, then filter out a 

sub-set of these with policy relevance, and then for this filtered set select the set of n scenarios with 

maximum diversity (n is set by the analyst). Compared to conventional MORDM where the 
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generation of policy alternatives is only done using a reference scenario, the approach by Eker and 

Kwakkel (2018) generate more decision options and more robust policies. 

 

A variant of directed search is multi-objective robust search (MORO) (Hamarat et al. 2014; Kwakkel, 

Haasnoot, and Walker 2015). In MORO, a MOEA is run with an objective function comprised of a 

robustness metric for each of the objectives. This objective function is then evaluated over a large set 

of scenarios. MORO therefore ensures Pareto-optimal robustness in the solutions. This means that 

policies will not be designed to perform “optimally” in any given reference scenario, but instead yield 

a good performance over several scenarios according to the specified robustness metric. However, 

MORO is computationally expensive since for each step in the optimization, a large number of 

scenarios are evaluated. Also, the selection of robustness metrics can have a large impact on the 

obtained results and it may require extensive work to set appropriate metrics (Eker & Kwakkel, 2018; 

Kwakkel et al., 2016; Shavazipour et al., 2021). A study by Bartholomew and Kwakkel (2020) 

compared MORDM, multi-scenario MORDM and MORO applied to the lake problem  (Carpenter et 

al., 1999), which is a common benchmark problem in the policy analysis literature . Focus is on how 

the three methods different extent of robustness consideration in the policy search phase affects the 

robustness of solutions, and computational cost. The analysis is made for three types of policy 

formulations: inter-temporal (static) policies, a direct adaptive policy search (closed loop) approach 

in which the policy lever values are updated every time step, and a planned adaptive approach, 

which is a variant of the direct policy search, but with policy levers updated only every t time step 

(t=5 is used in the study). The comparison concludes that the more adaptive policies demonstrate 

better robustness, regardless of what policy search method was used. MORO produces the most 

robust solutions for all three policy formulations. This result is unsurprising since MORO does to the 

largest extent consider robustness in the search phase. However, the computational cost for MORO 

is substantially higher, and when examining specific scenarios, MORO generated policies often 

perform worse than policies generated with MORDM methods (this effect is often denoted “the price 

of robustness”). The authors argue that in general, multi-scenario MORDM is a good pragmatic 

choice of method: it requires a minor increase in computation cost compared to MORDM, and MORO 

only offers a clear advantage when searching for static policies with a high focus on robustness. 

 
Figure 7 Overview of the Robust Decision-Making approach, and comparison to subsequent further developments thereof, 
with a focus on the steps Generation of policy alternatives, and Uncertainty analysis. 
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As previously noted, a key challenge for both MORDM-approaches and multi-objective robust search 

is how to specify relevant robustness metrics that measures the policy-relevant robustness features 

of the policies. Kwakkel, Eker and Pruyt (2016) discuss different types of robustness metrics within 

the framework of robust multi-objective optimization. Typically, robustness is understood as one of 

two views when it is operationalized within an optimization framework: (i) robustness is low 

uncertainty in the consequences of a policy, i.e., a robust policy has a small bandwidth of its 

consequences over all analyzed scenarios, or (ii) robustness in the form of minimization of 

undesirable outcomes, i.e., a robust policy will lead to desirable outcomes in a large share of 

scenarios. Furthermore, three types of metrics are distinguished.  

• Regret-based metrics. These compare the outcome of a strategy option to some 
performance measure for the same scenario. For instance, comparing the strategy option to 
the best performing strategy option for each scenario and then seek to minimize the 
maximum regret across all scenarios. 

• Satisficing metrics. These seek to maximize the number of scenarios that meet a pre-
determined minimum-performance threshold. This is similar to robustness in the framework 
of info-gap decision theory. However, the introduction of a pre-determined performance 
criteria introduces a new source of uncertainty since the proper selection of the criteria 
might be uncertain or disputed.  

• Statistical or density-based metrics. These asses the distributional characteristics of 
outcomes. Robustness is then characterized by either a “high-peaked” distribution (small 
bandwidth of policy consequences), or a more skewed distribution towards the region of 
desirable outcomes (desirable outcomes in a large share of scenarios). 

Through a case study of the European energy system, Kwakkel, Eker and Pruyt (2016) showcase that 

different selections of robustness metrics will highlight various aspects of robustness. They therefore 

stress the importance of carefully selecting robustness metrics to the policy problem at hand, and 

that it is typically a good idea to use multiple complementing robustness metrics. An additional in-

depth review of robustness metrics was performed by McPhail et al. (2018) which covers metrics for 

a broader set of applications. They categorize metrics using two dimensions: 1) whether the 

robustness calculation is based on relative or absolute values of system performance, and 2) whether 

the indication of system performance focuses on satisfactory performance or actual system 

performance. This results in four types of metrics: 

• Metrics based on absolute system performance values measuring absolute system 
performance. These metrics directly measure the performance of the system without 
comparing it to other options or thresholds. 

• Metrics based on relative system performance values measuring absolute system 
performance. These metrics compares the performance with other decision options or 
reference points, such as minimax regret, which compares the performance of different 
options in the same scenario. 

• Metrics based on absolute system performance values measuring whether the system 
performance is satisfactory or not. These metrics determine if the system performance 
meets a predefined satisfactory level or threshold. 

• Metrics based on relative system performance values measuring whether the system 
performance is satisfactory or not. These metrics compare the performance against a 
satisfactory level or threshold in a relative manner, considering how different options 
perform against the threshold for satisfactory performance. 
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2.3 How, and to what extent, have (deep) uncertainty been 
accounted for in transport planning?  

2.3.1 Accounting for uncertainty in transport planning processes 

Walker et al. (2013) conduct a literature review of general long-term planning approaches that 

acknowledge that plans need to be robust and adaptive to deal with an uncertain future. The authors 

stress that a sustainable plan should not only meet social, economic, and environmental goals, it 

should also be robust (perform good-enough for many different futures) and adaptive (able to cope 

with changing futures). In the review, Walker et al. describe five robust/adaptive planning 

approaches: assumption-based planning, robust decision making, adaptive policymaking, adaptation 

tipping points and adaptation pathways, and dynamic adaptive policy pathways. These approaches 

are assisted by several computational support tools for the design of robust/adaptive plans: fast and 

simple policy models, exploratory modelling and analysis methods, scenario discovery methods, 

robust optimization methods, and information gap methods.  

 

Lyons, Cragg and Neil (2018) describe the process that started at Transport Scotland with accounting 

for uncertainty in national transport planning. The authors stress that handling uncertainty in 

transport planning is a wicked problem, i.e., a problem which does not have a single simple solution. 

Often when trying to solve a wicked problem, new problems arise because of complex 

interdependencies. A scenario planning method was used to develop plausible alternative future 

scenarios, instead of the traditional method to produce one most probable scenario. This method 

includes conducting workshops to decide upon key drivers that are most uncertain and most 

important to identify critical uncertainties. The eight key drivers identified were: 

• Population, 

• GDP / (disposable) income, 

• energy supply capacity relative to demand, 

• demand for personal travel, 

• share of knowledge work within the economy,  

• capabilities and affordability of digital technologies, 

• change in share of manually controlled motor vehicles, and 

• popularity of walking and cycling. 

 

Lyons and Marsden (2021) discuss the concepts of opening out and closing down on uncertainty in 

transport planning. By opening out the authors mean embracing the uncertainty that is present. This 

can be done for example by a scenario planning approach where more scenarios are developed 

compared to the traditional approach with one most probable scenario. An example of application of 

such a scenario planning approach for the Baltimore-Washington DC region can be found in Knaap et 

al. (2020). Lyons and Marsden (2021) conclude that a lesson learnt from the experience with opening 

out is that communication to decision makers can be difficult due to an excess amount of 

information. By closing down on uncertainty, the authors mean the process of reducing complexity 

so that policy actions can be identified and communicated to decision-makers.  
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A Swedish study with the aim to broaden the future scenarios evaluated in municipal planning for 

commercial development and involve decision-makers in a participatory manner is Larsson et al. 

(2018). The authors developed a multicriteria decision analysis tool, with which several policy 

alternatives could be compared, and rank ordered. All involved stakeholders evaluate the same 

policy alternatives, but each stakeholder has their own set of criteria. For each criterion, the 

stakeholder needs to rank-order the policy alternatives in relation to the criterion. Furthermore, the 

stakeholder also needs to rank-order the criteria. It is acknowledged that these rank-orderings are 

uncertain and therefore an embedded sensitivity analysis is included in the tool. One of the main 

findings, when the tool was applied in case studies, was that it enabled the stakeholders to get more 

insight into and understanding of conflicting objectives. Thus, the nature of uncertainty mainly 

addressed in this work is ambiguity, i.e., uncertainty arising due to stakeholders interpreting data and 

results differently because of differences in frames and values. 

 

During recent years, there has been an emerging interest of applying EMA and DMDU to 

transportation modeling to support transport planning and policy analysis. One example is the work 

on EMA and DMDU within the U.S. Federal Highway Administration’s program TMIP (Transport 

Model Improvement Program). Within TMIP, various initiatives have been performed to develop 

tools for applying EMA and DMDU to transport planning (see Section 2.3.3) (Lemp et al., 2021), 

analyze how EMA and DMDU can bring value to transport planning, and assessments of the practical 

and organizational factors related to an introduction of EMA and DMDU (Lempert et al., 2022). A 

TMIP report by Lempert et al. (2022) suggest that DMDU approaches would “…turn traditional, 

predict-then-act analyses on its head” (Lempert et al., 2022, p. iii) in the sense that it would change 

the starting point of the process from generating the forecast, to the proposed long-term 

infrastructure and policy plan. This plan would then be evaluated against a large number of scenarios 

to illuminate the plans’ strengths and weaknesses over varying scenario conditions. These results 

would then be used to guide improvements of the plan for making it more flexible or robust to these 

conditions. The same report stress that while the planning approach would differ, DMDU can often 

rely on existing transport models and other scenario and forecasting tools. Through interviews with 

planners and modelers at various U.S. transport planning agencies, Lempert et al. (2022) identifies 

several motivations, benefits and barriers to DMDU implementation and provide recommendations 

for how to support early-stage adoption of DMDU.  

2.3.2 Uncertainty in relation to transport forecasting models and project appraisal 

Uncertainty in traffic forecasts 

de Jong et al. (2007) review attempts to quantify uncertainty in traffic forecasts. They divide these 

attempts into those who consider the effect of uncertain input on forecast output uncertainty and 

those who consider the effect of model uncertainty on forecast output uncertainty (some papers 

consider both types). They find two methods to investigate uncertain input data in the literature:  

• Forming of several scenarios which try to sketch consistent futures. Advantage: the 
researchers try to take correlation between input variables into account, e.g., high income 
growth is correlated with high car ownership values. Disadvantage: There is no measure of 
the likelihood of the different scenarios under study, which makes it impossible to calculate 
uncertainty bands for outcome variables.  
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• Applying statistical distributions for each input variable that is considered uncertain and then 
making several runs with random draws from these distributions, i.e., a form of Monte Carlo 
simulation. Advantage: Uncertainty in outcome can be quantified from the variance in 
outcome when running the same model with different inputs drawn from the predefined 
distributions. Disadvantage: Correlation between input variables is seldom considered, rather 
random draws are typically made from independent distributions. However, correlation can 
be considered by making draws from multivariate distributions.      

Regarding model uncertainty, the three main methods to quantify uncertainty are:  

• Jack-knife/Bootstrap method to correct for model specification errors.  

• Analytic calculation of the output standard error as a function of model parameter standard 
errors. Advantage: Exact calculation of output standard error due to estimation errors. 
Disadvantage: Requires a rather simple model.  

• Forming of parameter distributions from parameter standard errors and drawing from these 
distributions to make several model simulations with different parameter values. This is 
similar to the Monte Carlo simulation of input uncertainty. Advantage: Can handle complex 
models. Disadvantage: Requires multivariate parameter distributions to take correlations 
into account.    

The reviewed studies find a larger variance in link flows/area-wide demand due to input uncertainty 

(95% confidence intervals for demand between 18-33% around the mean) than due to model 

uncertainty (95% confidence intervals for demand between 5-14% around the mean). Also, in the 

application the authors conduct in the same paper using the national transport model for the 

Netherlands, effects of input uncertainty are found to be larger than effects of model uncertainty.   

 

Input data uncertainty is found to have a large effect on forecast accuracy also in Andersson et al. 

(2017), who compare eight Swedish national reference forecasts between 1975 and 2009 to actual 

outcome statistics of vehicle kilometers travelled (VKT). From 1990 and onwards all reference 

forecasts overestimate car VKT when compared to actual outcomes. The overestimation is in the 

order of magnitude of 5-20%. The authors investigate both the differences between cross-sectional 

and time-series elasticities and the effect of uncertain input data. They find that cross-sectional and 

time-series elasticities are remarkably similar, whereas incorrect input data lead to significant 

deviations between the forecast and actual outcome. The input variables which were the largest 

sources of errors were fuel prices, car ownership and GDP (after 2005). Especially future fuel prices 

were largely underestimated. The authors conclude that input values will always be difficult to 

predict (deep uncertainty) and therefore sensitivity analysis is very important. For some of the 

reference forecasts between 1975 and 2009 sensitivity analyses were in fact conducted at the time 

of prediction (when actual outcome statistics were not available). However, these sensitivity analyses 

did not result in an outcome as low as the actual vehicle kilometers travelled for car traffic, which 

calls for testing larger intervals of input parameters, such as fuel prices, in sensitivity analyses.  

 

A corresponding study was also conducted concerning freight transport forecasts between 1975 and 

2009 (Vierth et al., 2016). Vierth et al. find that truck and sea transport forecasts have on average 

been close to actual outcomes, whereas rail transport forecasts have systematically been 

overestimated. The freight reference forecasts are developed in two steps: first demand for freight 

transport between different zones are calculated, second the demand is allocated on different 
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modes using a cost-minimizing model. The first step of the process is not transparent but there have 

been indications of too high levels of overall freight transport demand. Vierth et al. therefore stress 

the need for sensitivity analyses regarding the growth of freight transport demand. 

 

Cruz and Sarmento (2020) review literature concerning inaccuracy in traffic forecasts and calculate a 

deviation of actual traffic flow and forecast traffic flow for the reviewed studies. The average 

deviation, when allowing for compensation of over- and under-estimation, is and overestimation 

(forecast flows higher than actual flows) of 9.3% for road projects and 23.6% for rail projects.  Cruz 

and Sarmento (2020) find seven main causes of inaccuracy in traffic forecasts, which they rank-order 

according to how common they are as explanators in the reviewed literature: 1) opportunistic 

behavior and optimism bias, 2) inadequacy in forecast models and data, 3) overall uncertainty (such 

as unexpected events and a constantly changing reality), 4) changes in demographics and land use 

patterns, 5) quality or construction delays, 6) competition and demand, and 7) economic cycle. The 

authors divide their conclusions into those that confirm insights from previous literature and those 

that are new insights. The confirmed conclusions are:  

• Errors in traffic forecasts are not normally distributed, rather there is a bias towards over-
optimistic forecasts.   

• Accuracy of traffic forecasts has not increased over time even though forecasting models 
have been developed and are today much more complex. 

The new conclusions are:  

• Forecasts for rail projects are in general more optimistic compared to road projects. 

• Inaccuracy of traffic forecasts tend to decrease over time since there often is a ramp-up 
effect, meaning that traffic on the new road/railway increases year by year during the first 
years of operation and thus reduces the gap towards the over-estimation in the forecast. 

Cruz and Sarmento (2020) state that the main driving force behind the optimism bias is political bias, 

in the sense that planners often conduct CBAs of projects that politicians have already publicly 

committed to. Eliasson and Fosgerau (2013) show however that optimism bias need not be 

deliberate and deceptive – a bias is introduced already by selecting projects with low costs and high 

demand into a shortlist of projects to be evaluated using CBA, see also discussion below in the 

section “Uncertainty and cost-benefit analyses”. 

 

Hoque et al. (2021) apply a data-driven method to quantify forecast uncertainty from the accuracy of 

previously conducted forecasts for road projects. In line with Cruz and Sarmento (2020), they find 

that overestimation of traffic on a road is more common in forecasts compared to underestimation. 

Considering all road projects, the median for actual traffic when the road is opened is 6% lower than 

the forecast. Several characteristics of the road projects have a significant effect on how much the 

forecast deviates from actual traffic counts: type of road (forecasts for arterials and local roads 

deviate more from actual traffic compared to freeways), type of project (forecasts for new roads 

deviate less from actual traffic compared to improvements on an existing road7), and forecast 

method (forecasts where transport models are used deviate less from actual traffic compared to 

 
7 The authors acknowledge that this result is counter-intuitive and call for more research on the topic. They suggest one possible 

explanation which is that forecasters are aware of the difficulty of predicting traffic on a new road and therefore treat the assignment with 

care.   
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trendlines/professional judgement). The authors end with three main recommendations for 

practitioners: 1) Present the results of a forecast as a range of expected outcomes, 2) Investigate the 

low and high ends of the range to see if these extreme values of traffic will change the overall 

investment decision, and 3) Measure traffic of new projects during their first year of operation and 

compare this to forecast values in order to monitor the accuracy of the forecast and to use these 

local measurements for estimation of uncertainty of future forecasts. Furthermore, the paper also 

includes a discussion about the relation between accuracy and uncertainty, which is summarized in 

Figure 8.     

 

 
Figure 8 The relation between accuracy and uncertainty in traffic forecasts. Figure from Hoque et al. (2021).  

Uncertainty and cost-benefit analyses 

It is not only forecasts of traffic effects that suffer from uncertainty – the valuation of these effects 

may also be uncertain. Nocera and Tonin (2014) discuss uncertainty in the valuation of CO2 

emissions. The recommended valuations for reduction of CO2 emissions e.g., when conducting cost 

benefit analyses (CBA) of transport projects, differ substantially in the scientific literature. This is 

related to the uncertainty regarding what impacts climate change will have on our economies and 

well-being in the future, and the uncertainty related to the non-linearity of these impacts, where 

additional CO2 emissions in a situation when the stock of CO2 emissions is already high is worse than 

when it is low. The authors suggest the use of a probability distribution for CO2 emission valuation to 

capture the uncertainty in marginal social cost of CO2.  

 

Asplund and Eliasson (2016) discuss the broader question of how uncertainty impacts cost-benefit 

analyses (CBA). They investigate the impact of different types of uncertainty and conclude that CBA 

results are most affected by uncertainty in investment cost and forecast transport demand. 

However, the authors stress that CBA ranking of investments is surprisingly stable to the tested 

uncertainties, meaning that the CBA rank order of investments does not change much even in a 

situation with large uncertainty.  

 

Flyvbjerg (2009) and Flyvbjerg and Bester (2021) show that costs are systematically underestimated 

and benefits systematically overestimated for infrastructure investments when ex-post evaluations 

of built projects are compared to ex-ante forecasts. Flyvbjerg (2009) argues that this bias comes from 

misleading forecasts. Fosgerau and Eliasson (2013) show however that the bias could just as well be 
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due to a selection bias, where projects for which costs have been underestimated and demand 

overestimated are more likely to be selected and built. Thus, the bias found when comparing ex-post 

evaluations and ex-ante forecasts does not have to be deliberate. Rather it could be unbiased 

uncertainty in ex-ante forecasts which leads to bias in the projects selected for implementation. 

Furthermore, Fosgerau and Eliasson (2013) show that the average payoff of projects selected using 

the CBA method is higher compared to average payoff of randomly selected projects, even if 

forecasts are very uncertain.  

2.3.3 The use of EMA and DMDU with transport models  

 

Within the previously mentioned U.S. Travel Model Improvement Program (TMIP), the tool TMIP-

EMAT has been developed to support EMA and DMDU applications for regional travel demand 

forecasts (Lemp et al., 2021). TMIP-EMAT is developed by extending the open source Python library 

EMA-Workbench8 (Kwakkel, 2017) which provides a variety of tools for performing EMA and DMDU 

analyses. The purpose of TMIP-EMAT is to allow for more than a single point prediction by providing 

methods to systematically explore uncertainties in input and model parameters and provide a model 

forecast as a range of outcomes. Using a travel forecast model in an exploratory manner allows the 

analyst to investigate a range of different futures, rather than trying to predict only one future. 

Several uncertainty variables important for the forecast outcome need to be selected and 

assumptions need to be made regarding ranges and distributions for these uncertainty variables. 

Milkovits et al. (2019) state that defining a range is less restrictive compared to assuming a single 

point value, which is state-of-practice when not using EMA. Travel forecasting models usually take 

several hours just to run one scenario. Therefore, TMIP-EMAT includes tools for generating a meta-

model of the travel forecasting model. The meta-model is a simplified representation of the original 

model which is much faster to run. The meta-model is automatically generated and includes a linear 

regression model to capture overall trends and linear relationships, as well as a Gaussian process 

regression model to capture non-linear effects Lemp et al (2021). A visualization tool within TMIP-

EMAT facilitates for the analyst to investigate results for different values of the uncertainty variables. 

Validation of the original travel forecasting model is also facilitated. A proof-of-concept study has 

been performed for TMIP-EMAT in which it was applied for the Greater Buffalo-Niagara Region in the 

US (Lemp et al., 2021; Milkovits et al., 2019). Four uncertainty variables are included in the proof-of-

concept study: Households and employment in the region, roadway capacity, valuation of car in-

vehicle time, and alternative-specific constants for vehicle availability. The authors note however 

that the value of the approach needs to be further explored. 

 

EMA has also been used together with a transport model in a fairly recent master thesis from the 

Netherlands (van Baarle, 2021). In the thesis, robust decision making is applied to bike and car policy 

analysis in the municipality of Groningen. The transport model used is a Visum model which is 

adapted to reduce run time. Run time is reduced by removing route assignment, removing indirect 

tours (tours including a secondary stop such as shopping on the way home from work, accounting for 

about 20% of the tours in the model), and running the model once instead of three times. The 

authors validate the changes to the model and find that removing the route assignment part does 

not affect the distance travelled by car in the municipality. They also find that the car share changes 

by less than 1% when only calculating mode and destination choice for direct tours, not indirect 

 
8 EMA-workbench is available at: https://github.com/quaquel/EMAworkbench 
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tours. All in all, model run time is reduced from about 22 hours to 12 minutes. The Visum model is 

connected to EMA using the built-in Visum python console. The script implementing this connection 

is available as open source on GitHub9. With the reduced run time the EMA calculations took about 1 

week. Three policy levers are analyzed: fast bike lanes, car speed limit reduction, and extension of car 

parking fee area. The results show that the bike policy is most robust to uncertainties in e-bike use, 

car cost per km, public transport cost per km and reduction in tours due to working from home. The 

speed limit reduction policy shows a very small effect on car share in all scenarios.  

 

Other, non EMA-based, DMDU approaches have been applied to various transport planning issues, 

for instance dynamic adaptive policy making has been applied to the implementation management 

of Mobility-as-a-service (Jittrapirom et al., 2018) and automated taxis (W. E. Walker & Marchau, 2017).  

2.3.4 Implications of uncertainty for planning the future transport system 

 

Lyons and Marsden (2021) argue that we currently face significant changes to the role of travel in 

society and that people are likely to travel less in the future due to among other things new digital 

solutions. This is in contrast with Eliasson (2022) who argues that historical transport and digital 

technological developments have not decreased travel in society and is not likely to do so as a 

consequence of the digital technology developments during the pandemic either. People seem to be 

willing to dedicate a surprisingly stable amount of time per day to travel. When travel speeds 

increase, due for example to an infrastructure investment, then we travel longer distances in similar 

travel times. On the same token, when online meetings are made possible, we add another meeting 

which was not possible to conduct previously. This way, accessibility to places and people has 

constantly increased in our society. However, there are other uncertainties, which may be very 

important for transport planning decisions, such as how fast the vehicle fleet will be electrified, as 

well as the development of fuel price (including price of electricity), population and GDP. Note also 

that changes in fuel prices, population and GDP also indirectly affect the total amount of vehicle 

kilometers travelled in a country.  

 

Performing policy analyses of policies that have not previously been implemented or evaluated is 

another uncertainty related challenge. In such analyses, there might be a high degree of uncertainty 

about policy impacts, and how they will interact with other (Trosvik et al., 2023; Witzell, 2020). This 

ties in to the broader, ongoing debate on how different types of measures for reaching the climate 

targets (increasing the share of electric vehicles and more energy efficient vehicles; increasing the 

share of renewable fuels; and limiting or reducing future traffic volumes) should be combined and 

balanced, considering the costs, feasibility, trade-offs, and distributional effects various measures 

entail. 

2.4 Summary and synthesis of literature review 

The scientific understanding and its relationship with uncertainty have undergone significant 

evolution. Initially, during the Enlightenment, science was viewed as a pursuit of certainty, leading to 

the positivist view that understood uncertainty as unscientific. During the 20th century, this view 

evolved. Developments in physics and mathematics illuminated and conceptualized fundamental 

 
9 https://github.com/ilmovanbaarle/Thesis-Ilmo 
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uncertainties in nature. Within economics, ideas distinguishing between calculable risks and inherent 

uncertainties emerged. This era also saw the rise of post-modernism and social constructivism, 

emphasizing that science is not purely objective, and that more data and knowledge does not 

necessarily mean less uncertainty. Instead, more knowledge might reveal that a system is more 

uncertain than what was initially understood. 

 

At its core, uncertainty is a limited knowledge of past, current, or future events. If an event's 

probability is not definite, it is uncertain. Uncertainty ranges from complete determinism, an ideal 

that cannot be achieved, to total ignorance.  Deep uncertainty arises in situations where it is 

challenging to assign probabilities due to system complexity, scarce information, or inherent 

unpredictability of complex systems. Deep uncertainty leads to a need to consider a multiplicity of 

futures, which is typically challenging in decision-making situations. Other frameworks like VUCA and 

global/local uncertainty have also emerged, highlighting the importance of considering multiple 

potential futures. 

 

To better describe and communicate uncertainty in relation to policy making, the literature has 

moved past the basic differentiation of risk and uncertainty types. The framework by Walker et al. 

(2003) was developed as an unifying typology to describe uncertainty in model-based policy analysis. 

This framework identifies the location, level, and nature of uncertainty and sought to help policy 

analysts prioritize and treat uncertainties in models, and to communicate uncertainty more clearly in 

their policy analyses with policy makers. This framework was later further developed by Kwakkel et 

al. (2010). 

 

The role of uncertainty is central when applying scientific methods for policy analysis and the study 

of sociotechnical systems. Weinberg's concept of trans-scientific questions (Weinberg, 1972) 

illustrate that policy issues might be framed scientifically but lack definitive answers. Solutions to 

these problems cannot objectively be labelled as right or wrong but are rather deemed good or bad 

based on subjective judgments, and different stakeholders often have differing opinions. Adding to 

the challenges of policy-oriented science is the idea of wicked problems (Rittel & Webber, 1973). 

Contrary to clear-cut scientific issues, wicked problems are ambiguous and multifaceted. Their 

solutions are judged subjectively, often leading to varying stakeholder opinions. Modern societal 

systems' complexity further introduces uncertainties. As van Asselt (2000) described, modern policy 

problems tend to be interconnected, span multiple disciplines, and operate across vast scales. 

Addressing them is challenging because they demand diverse perspectives and have to account for 

not entirely understood phenomena, like climate change or emerging technologies.  

 

Making decisions for the future involves anticipating long-term changes that can influence or be 

influenced by short-term actions. Lempert, Popper, and Bankes (2003) introduced robust decision-

making (RDM) to address challenges associated with long-term policy analysis (LTPA) in situations of 

deep uncertainty. Historically, various methods have been used to think about the future, such as: 

narratives, group narratives like Delphi and Foresight, simulation modelling, decision analysis, and 

scenario-based planning. However, each approach has limitations, especially in addressing the 

multitude of plausible futures.  
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Maier et al (2016) highlight the importance of considering multiple futures in model-based 

quantitative policy analysis. They recommend describing uncertainty using distinct plausible 

scenarios, measuring system performance based on its robustness to future changes, and designing 

adaptive strategies that can be adjusted as conditions evolve.  

 

Decision Making Under Deep Uncertainty (DMDU) is a collection of tools and methods used to 

identify strategies that are robust and adaptive in the face of deep uncertainty (Marchau et al., 

2019). DMDU is based on three key ideas: exploratory modelling, adaptive planning, and decision 

support. When applying DMDU, quantitative policy models are used to simulate a range of scenarios 

and assessing policy alternatives. There are many different DMDU techniques and tools, of which 

many are complementary. An overview and classification of DMDU methods is provided by Kwakkel 

and Haasnoot (2019). For the MUST project, two of these methods are in focus: Robust Decision 

Making (RDM), and Exploratory Modeling and Analysis (EMA).  

 

RDM focuses on identifying strategies that are robust against a wide variety of future conditions. It 

challenges the prevailing notion of basing policy analysis on a prediction of a system’s future state, 

aiming instead to support decision-making in cases of deep uncertainty when definitive forecasts 

cannot be made. The RDM process is comprised of a four-step iterative procedure: i) problem 

formulation, ii) generation of policy alternatives, iii) uncertainty analysis, and iv) vulnerability 

analysis. The overarching goal of RDM is not just the identification of policies with a high degree of 

robustness, but also identifying potential vulnerabilities for these strategies. Moreover, if RDM is 

performed in collaboration with relevant stakeholders, it can enhance the understanding of the 

policy problem, generate additional policy alternatives, and provide deeper insights into the inherent 

trade-offs of policies. 

 

EMA is a more general approach which involves creating, exploring, and analyzing many alternative 

policies, models, or scenarios to understand the impact of uncertainties on system behavior and 

decision outcomes (Kwakkel and Pruyt 2013). EMA utilizes several methods and techniques, such as 

sampling, sensitivity analysis, uncertainty analysis, scenario discovery, and (multi-objective) 

optimization. To structure EMA problems, the XLRM framework is often used to specify the external 

uncertainties (X), policy levers (L), relationships in the system (R), and outcomes of interest (M). EMA 

is essentially an analysis of how regions of uncertainty (X and R) and the decision space (L) relate to 

the outcome space (M).  

 

EMA differentiates between two applications: open exploration and directed search. Open 

exploration systematically samples uncertainty or decision space, serving multiple purposes like 

quantifying feasible outcome ranges, comparing policies, analyzing sensitivity and uncertainty, 

vulnerability analysis, and selecting policy-relevant scenarios. Directed search uses mathematical 

optimization to search the decision or uncertainty space, aiming to identify policies or scenarios of 

interest. Often, EMA problems have multiple objectives involving trade-offs. In these cases, multi-

objective optimization is performed, often using a multi-objective evolutionary algorithm (MOEA). 

Directed search can be used to generate candidate policies within RDM. One such approach is Many 

Objective Robust Decision Making (MORDM), where a MOEA is used to generate Pareto-optimal 

policies based on a reference scenario. Thereafter, the robustness and vulnerabilities of these 

candidate policies are evaluated using RDM. However, policies based on a single reference scenario 
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might limit robustness, leading to the development of multi-scenario MORDM. Multi-objective 

robust search (MORO) is another variant that uses an objective function with a robustness metric for 

each objective, evaluated over several scenarios, to identify robust policies. Specifying relevant 

robustness metrics is crucial, with robustness understood either as low uncertainty or minimization 

of undesirable outcomes. Three metric types are distinguished: regret-based, satisficing, and 

statistical or density-based. Different robustness metrics emphasize various aspects of robustness, 

underscoring the need for careful selection tailored to the problem at hand and use of 

complementary metrics. 

 

In the transport planning field, it has for several decades been common practice to make a transport 

forecast of a future year (typically around 20 years in the future) and to calculate costs and benefits 

of transport projects for the forecast of this forecast year. In some cases, sensitivity analyses have 

been made in which the planner tries a few changes to the input data such as changes to assumed 

population growth or assumed future fuel prices. The accuracy of these transport forecasts has been 

evaluated in several studies (Andersson et al., 2017; Cruz & Sarmento, 2020; Hoque et al., 2021) 

coming to the conclusion that transport forecasts are more often optimistic rather than pessimistic, 

over-estimating demand and under-estimating costs when compared to actual outcome statistics. 

Thus, the uncertainty in the forecast is not purely random, there is a systematic bias. In the reviewed 

studies, the over-estimation of forecast traffic flows/vehicle kilometers compared to actual outcome 

statistics is in the order of 5%-20%. It is also found that rail traffic forecasts in general deviate more 

from actual outcomes compared to road traffic forecasts.   

 

Rather than conducting a handful of sensitivity analyses of selected input parameters, researchers 

and planners have in the latest years tried to deal with uncertainty in transport planning and 

transport forecasting in a more all-encompassing way, applying approaches from the DMDU field. 

This implies that policies/measures are tested against a large set of scenarios with varying input 

parameters within defined ranges, and that the policies/measures that are most robust across the 

different scenarios are selected. The prominent example of this is a U.S. model called TMIP-EMAT 

(Lemp et al., 2021; Milkovits et al., 2019). TMIP-EMAT applies EMA together with a travel forecasting 

model to give a range of outcomes given uncertainties in employment levels, values of travel time 

etcetera. 
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3 Workshop series 

The purpose of the workshop series is to bring together experts within various areas of model-based 

analysis at Trafikverket with researchers from the project partners to identify, analyze and discuss 

deep uncertainty and the challenges it poses for Trafikverket’s long-term planning and policy analysis 

processes, and methods for managing it. It is also intended as a primer to the concepts and methods 

explored within the project to achieve better transfer of knowledge to Trafikverket from the other 

work packages in the project. The objectives for the workshop series are: 

• To gather empirical data on analysis needs and uncertainties of importance for Trafikverket’s 
planning and policy analysis processes.  

• To share knowledge about concepts and methods identified during the literature review to a 
selected group of stakeholders at Trafikverket and to researchers not involved in a day-to-
day basis in MUST.  

• To get guidance for scoping the modelling work and analysis in WP2 and WP3 and to put 
these modelling studies in a broader context.  

• To generate ideas for (potential) future activities that Trafikverket can undertake to 
strengthen its ability to manage deep uncertainty. 

The workshop series consists of two workshops, Workshop 1 (WS1) and Workshop 2 (WS2), which 

build on each other, see Table 2 for an overview.  In WS1, focus is on the concept of deep uncertainty 

and to analyze how it relates to some of Trafikverket’s analysis needs. During the workshop, a 

framework for classifying and communicating deep uncertainty in model-based foresight or policy 

analysis is introduced. Exercises are performed to identify and categorize Trafikverket’s analysis 

needs, and to perform an analysis of uncertainty for one of the analysis needs, producing the 

reference forecast (basprognos) for the Swedish transport system, by applying the aforementioned 

framework. WS2 is focused on the concept of decision making under deep uncertainty and 

introduces a framework for uncertainty in the policy analysis process and an overview of exploratory 

modelling and analysis by presenting the case study in WP2. The exercises are centered on the case 

of identifying and analyzing policies for reaching the national climate targets for the transport 

system. WS2 is concluded by a brainstorming session on the implications for Trafikverket and to 

generate ideas of potential activities Trafikverket could undertake to improve its ability to manage 

deep uncertainty. 
Table 3 Summary and overview of the two workshops 

 Workshop 1 Workshop 2 

Date and location 2022-06-09 at VTI’s facilities in 

Stockholm 

2023-02-21 at VTI’s facilities in 

Stockholm 

Aim Identify and describe analysis needs 

in the transport sector which are 

characterized by (deep) uncertainty 

Analyze uncertainty in the policy 

making process and how it can be 

managed 

Scope General analysis needs, uncertainties 

and forecasting processes 

Case: Reference forecast 2040 

(basprognos) 

Policy analysis process 

Case: Policies for reaching the 

climate targets for the transport 

system  
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Theoretical focus Deep uncertainty: definitions, 

dimensions, and classification. 

Decision making under deep 

uncertainty. 

Tools and 

methods 

introduced 

Framework for classifying and 

communicating uncertainty in model 

based policy analysis (Kwakkel et al., 

2010; W. E. Walker et al., 2003) 

Policy analysis framework (Marchau 

et al., 2019; W. E. Walker, 2000) 

Exploratory modelling and analysis 

(Bankes, 1993; Kwakkel & Pruyt, 

2013) 

Exercises 1.1 Identify and categorize analysis 

needs in the transport sector and the 

associated uncertainties. 

2.1 Detailed analysis and 

classification of uncertainty 

regarding the 2040 reference 

forecast 

2.1 Analysis of uncertainty in the policy 
analysis process for policies to reach the 
climate target for the transport system 
2.2 Managing uncertainty using Decision 
making under deep uncertainty and 
exploratory modelling and analysis & 
activities to strengthen Trafikverket’s 
ability to deal with deep uncertainty 

Outputs Mapping of key analysis needs for 

future freight and passenger 

transport and their associated 

uncertainties 

Uncertainty analysis for reference 

forecast in the form of uncertainty 

matrix 

Uncertainty analysis for climate policy 
strategies and how DMDU and EMA can 
support the policy analysis and decision 
making. 
 
Reflections on EMA and other ideas to 
improve the ability to manage deep 
uncertainty in transport forecasting, 
planning and policy analysis. 

Planning of the workshops, designing exercises and the identification and recruitment of participants 

is done together by KTH ITRL and VTI with assistance from Trafikverket’s project leader. 

3.1 Workshop 1 

3.1.1 Aim  

The aim of workshop 1 was to identify and describe analysis needs in the transport sector which are 

characterized by uncertainty. The workshop contributed to the research project both by collection of 

data and by testing how groups of experts can work systematically with uncertainty matrices for 

uncertainty analysis.     

3.1.2 Exercises and set up 

The workshop was carried out on site at VTI premises in Stockholm on June 9th, 2022. Ten experts 

participated during the workshop (see Appendix for a list of participants), which lasted for three 

hours. The workshop started with an introduction to the project and the workshop series and then 

continued with two exercises (coffee in-between) and reporting back to all at the end of each 

exercise. During the exercises, the participants were divided into two groups, one for passenger 

transport and one for freight transport, depending on their main area of expertise.  

 

Exercise 1.1 – Identify and categorize analysis needs in the transport sector and the associated 

uncertainties 
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In this exercise, the experts were first asked to individually note analysis needs in the transport 

sector which they think are characterized by uncertainty. The analysis needs were written on 

template slips of paper, see Figure 910.    

Analysis needs  

Which uncertainties 
are coupled to the 
analysis need?  

 

Figure 9 Template for paper slip used to document analysis needs during exercise 1. 

The experts were then asked to sort the slips of paper into clusters of similar analysis needs. Then, 

the last part of Exercise 1 was for the experts to map the analysis needs in a matrix along the axes 

small - large uncertainty and less - more important topic, see Figure XX.    

  
Figure 10 Template for mapping of analysis needs along two axes. Vertical: degree of uncertainty for the analysis need. 
Horizontal: degree of importance for the analysis needs for Trafikverket. 

Exercise 1.2 – Detailed analysis and classification of uncertainty regarding the 2040 reference 

forecast 

 

In Exercise 2, the experts were asked to focus on one specific analysis need – the 2040 reference 

forecast.  

The experts were first introduced to the uncertainty framework developed by Walker et al. (2003) 

and further developed by Kwakkel et. al (2010). The aim of this framework, see Section 2.1.3, is to: 1) 

give a common terminology to communicate around uncertainty, 2) give a better understanding of 

different dimensions of uncertainty, and 3) facilitate finding suitable ways of handling uncertainty. 

The main dimensions in this uncertainty framework are: 1) where uncertainty is located, 2) to what 

 
10 The text on workshop material has in this report been translated from Swedish to English.  
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extent uncertainty exist, and 3) which type of uncertainty we are dealing with. The framework is 

applied in the form of a three-dimensional uncertainty matrix with categories for each dimension. 

The experts were then asked to individually write down uncertainties related to the 2040 reference 

forecast. Just as with the analysis needs in Exercise 1, the uncertainties were written on template 

slips of paper, see Figure 11. 

Uncertainty  

Figure 11 Template for paper slip used to document uncertainties for exercise 2. 

Then, a simplified version of the Kwakkel et. al (2010)  uncertainty matrix was used, focusing on two 

of the dimensions: 1) where uncertainty is located (categories: system limits, model, implementation, 

calibration, input data) and 2) to what extent uncertainty exist (categories: shallow or deep 

uncertainty), see Figure 12. For each of the uncertainties related to the 2040 reference forecast that 

the participants had previously document, the expert group the discussed where it should be placed 

in the uncertainty matrix.  

 
Figure 12 Uncertainty matrix used in exercise 2. This is a simplified version of the uncertainty matrix by Kwakkel et al.  
(2010), see Figure 1. 

3.1.3 Results Exercise 1.1 

Many analysis needs in the transport sector characterized by uncertainty were identified by the 

experts both in the passenger and freight transport groups. These were clustered together by the 

expert groups.  

 

The passenger transport group identified nine clusters of analysis needs. In the analysis work after 

the workshop these clusters of analysis needs originally written in Swedish were reviewed by the 

authors of this report and given a name in English: 

1. Changes in travel behavior 

2. Demand for rail travel and the effects of high-speed trains 

3. Automation, electrification, and digitalization (AED) and conflicting goals 

4. Travel demand effects of AED 

5. Effects of AED on different traveler groups 
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6. Effects on accessibility 

7. Development of reference forecast 

8. Passenger valuations over time 

9. Long-term development of GDP, income distributions, demography etc. and the effect on 
passenger transport 

The passenger transport expert group placed the clusters according to the pattern shown in Figure 

13. It is interesting to note that the analysis need cluster with the highest importance and largest 

uncertainty is the long-term development of GDP, income etc. These are traditionally input data to 

transport analyses and are forecast and supplied by external sources, i.e., uncertainties are inherited 

from a previous forecast.   

 
Figure 13 Summarized results for exercise 1, passenger transport. 

The freight transport group did not manage to cluster all analysis needs within the time of the 

exercise. The non-clustered analysis needs are presented as-is in Table 11 in the Appendix. Just as for 

passenger transport, the clusters of analysis needs originally written in Swedish were reviewed by 

the authors of this report and given a name in English:  

1. Development of dynamic electricity prices and grid capacity 

2. Effects of automated trucks 

3. If, when and how automated trucks will be introduced 

4. Mode choice and the effect of electrification/new technology 

5. Future freight transport demand 

6. Samgods model quality and correctness 
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The remaining analysis needs that were not clustered during the workshop where clustered by the 

report authors after the workshop as follows: 

7. Analyzing the need (volume and location) for charging infrastructure 

8. Analyzing the effects of potential policies which may not have previously been tested and 
therefore lack empirical evidence 

9. Understanding the (future) relationship between road/rail/sea and how to achieve modal 
shifts 

10. Estimating the future use and market shares of different fuel/energy sources. 

The freight expert group placed the clusters 1-6 according to the pattern shown in Figure 14. There 

are two analysis need clusters which are identified as most important: the future freight transport 

demand and the Samgods model quality and correctness, out of these the future freight transport 

demand is assessed to be most uncertain.  

 
Figure 14 Summarized results for exercise 1, freight transport. 

3.1.4 Results Exercise 1.2 

As described above, the second exercise was centered on the 2040 passenger/freight transport 

reference forecasts. The passenger transport expert group identified 17 uncertainties related to the 

reference forecast. These were placed in the uncertainty matrix. The matrix cell where most 

uncertainties were placed was “input data/deep uncertainty”. Examples of uncertainties placed in 

this cell are: What will the economic development in Sweden look like until 2040? How will the cost 

for travel with different modes change over time? Where will people live and work 2040? There were 

also several uncertainties placed in the matrix cell “model design/deep uncertainty”, such as 

uncertainties related to: values of time, the driving cost as proxy when assessing policy effects, and 

changes in travel behavior over time. One uncertainty was placed in “system limits/Deep 

uncertainty” and this was related to digital accessibility and how it will affect travel demand in the 

future.  
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The categories “model implementation” and “model calibration” had almost no occurrences under 

“deep uncertainty” except for an uncertainty related to complex model systems leading to risk for 

errors which was placed in-between the shallow and deep uncertainty categories by the expert 

group. The freight group also had no occurrences of deep uncertainties regarding implementation or 

calibration. When the workshop participants presented their results from Exercise 2 it was discussed 

that this is to some extent a general characteristic of these categories – model implementation and 

model calibration are usually characterized by shallow uncertainty, not deep uncertainty. For 

example, model calibration is usually conducted against a recent year, and it can be difficult to find 

data from the recent year to calibrate against, but this is different from assumptions about input 

data for 2040 where there is no exact answer to be found, i.e., it is deeply uncertain. Similarly, code 

errors can occur during model implementation, but these are possible to find and remedy, i.e., they 

are also not deeply uncertain. 

Several shallow uncertainties were identified in the passenger expert group. These were related to 

model design (e.g., network effects of investments in bicycle infrastructure), to calibration (ticket 

prices for air and train, cost matrices for car, data about passenger kilometers by mode and trip 

purpose, etc.), and to input data especially concerning the transport networks (correct 

infrastructure/timetable/public transport supply?).     

 

 
Figure 15 Summarized results from exercise 2, passenger transport. 

The freight transport expert group identified 29 uncertainties related to the freight 2040 reference 

forecast and placed these within the uncertainty matrix. Just as for passenger transport, the cell 

where most uncertainties were placed was “input data/deep uncertainty”. Examples of uncertainties 

placed there were both similar to passenger transport such as general development of the economy, 

fuel price, and technical development of vehicles, but also uncertainties specific to the freight sector 

such as industry establishments in the north of Sweden and sourcing-strategies/trade patterns. A few 

deep uncertainties were also identified in the categories “system boundaries” and “model design”. 

No deep uncertainties were identified in the categories model implementation or calibration. 

Shallow uncertainties were identified for all location categories. Most shallow uncertainties were 
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placed under “input data” (infrastructure changes, regional scenarios from national data, 

interpretation of climate goals, uncertainty in EU-policy, and uncertainty in rail capacity), followed by 

“model design”, “model calibration”, “model implementation”, and “system boundaries”. 

 
Figure 16 Summarized results from exercise 2, freight transport. 

3.1.5 Discussion and takeaways 

The following takeaways have been identified from Workshop 1: 

• Forecasting the future transport demand, which in turn means forecasting of multiple factors 
affecting transport demand (economic growth and distribution thereof, population growth, 
location choices, etc.), was identified as a highly uncertain and important analysis needs. 

• Analyzing the impacts of (potential) policies, and in particular, combinations of policies was 
identified as an uncertainty. Lack of empirical data, dynamic effects and network effects 
were both mentioned as factors making the analysis complex. 

• Analysis needs related to emerging transport technologies such as automation, electrification 
and digitalization are repeatedly mentioned for both passenger and freight transport when 
discussing analysis needs characterized by uncertainty. These are associated with 
uncertainties both related to in what direction and how fast these trends will develop 
(scenario uncertainty) but also how they should be conceptually modelled and/or how they 
will affect model input parameters (structural uncertainty). These trends may also require 
adjusting the system boundaries for forecasting models, e.g. to incorporate how digital 
accessibility will interact with the transport system and affect transport demand, and how 
the energy (electricity) system may impose capacity restrictions for charging of electric 
vehicles. 

• Uncertainties related to model implementation and model calibration are in general shallow 
uncertainties regarding data shortage and implementation errors.  

• The complexity of the forecasting models was identified as an uncertainty by both the 
passenger (Sampers) and freight transport (Samgods) groups. This relate both to uncertainty 
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in the model implementation and the risk for unidentified errors in the code or input data 
but also to the conceptual design of model systems  

• For both passenger and freight transport, most of the identified deep uncertainties for the 
2040 reference forecast are located in the “input data” category. Several of these 
uncertainties are in inherited from previous forecasts regarding economic and population 
development.  

• Having a face-to-face meeting was important for achieving good discussions about such a 
complex topic as uncertainties in transport forecasting. 

3.2 Workshop 2 

3.2.1 Aim 

The aim of the second workshop was to: 

• Identify and discuss uncertainty for analyzing policies for reaching the climate targets for the 
national transportation sector. 

• Introduce the concept of EMA and get inputs on its benefits, drawbacks, and potential 
applicability in Trafikverket. 

• Get input on challenges for Trafikverket due to deep uncertainty and what could be done to 
address these. 

3.2.2 Exercises and set up 

The workshop was held at the 21 February 2023. Just as for workshop 1, the workshop was carried 

out on site at VTI premises in Stockholm. Eight experts participated during the workshop (see 

Appendix for a list of participants), of which four also participated in workshop 1. 

 

The workshop started with an introduction to the project and the workshop series and then 

continued with two exercises. During the first exercise, the participants were divided into two 

groups, one for passenger transport and one for freight transport, depending on their main area of 

expertise. Before the second exercise, an introduction to Exploratory Modeling and Analysis (EMA) 

and a demonstration showcasing some of the ongoing work using EMA in WP2 was given. In total, 

the workshop lasted for three hours.  

 

Exercise 2.1 – Uncertainty in the policy analysis process for policies to reach the national climate 

targets for the transport sector. 

In the first exercise, an uncertainty analysis of the policy analysis process for policies for reaching the 

national targets for the transport sector was performed. As a basis for the exercise, a framework 

based on Marchau et al. (2019), see Figure 17, was used. The framework describes the various 

elements in the policy analysis process and distinguishes different types of uncertainties (illustrated 

by red boxes in Figure 17). First, an introduction to the exercise and framework was given followed 

by an introduction to previous a policy analysis made by Trafikverket (Trafikverket, 2020d) which was 

used as a case for the exercise.  
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Figure 17 Analysis framework for categorisation of different types of uncertainties in the policy analysis process for exercise 
1. Author’s adaptation based on Marchau et al. (2019). 

The participants were split into two smaller groups, one for passenger transport and one for freight 

transport. Each participant was asked to think of what uncertainties the policy analysis process 

entails and write each uncertainty on a post-it note. The participants in the two group then jointly 

clustered and categorized their uncertainties and mapped them onto a canvas separated according 

to the different uncertainty categories of the framework, see Figure 18. The final task was that each 

participant voted for which three uncertainties they deemed as most important to consider for the 

policy analysis work in WP2 in MUST. 

 



REPORT  2024-02-01 

MUST: Phase 1 Albin Engholm & Ida Kristoffersson 

 

56 

 

 
Figure 18 Example of an uncertainty canvas from exercise 2.1. 

 

Exercise 2.2 – What can Trafikverket do to enhance its ability to deal with deep uncertainty? 

The second exercise was designed as a brainstorming session intending to open up for general 

reflections on deep uncertainty in transport planning, if and how EMA can be applied to better 

manage it and ideas for how Trafikverket can enhance its ability to deal with deep uncertainty. The 

exercise was intended to be performed mainly through a pre-prepared online template which the 

workshop participants got access to. This document consisted of a set of headings and questions to 

guide the participants’ and the participants were supposed to fill in their thoughts and comments 

(see Appendix). However, during the workshop, the introduction to EMA and the demo of work done 

with EMA in WP2 which proceeded Exercise 2, sparked a long discussion in the workshop group 

which touched upon many of the topics intended to be covered during Exercise 2.  This discussion 

was not cut short, and notes were taken by the workshop organizers. Only a short amount of time 

was allocated to work with filling in the document prepared for the exercise. 

3.2.3 Results Exercise 2.1 

The freight transport group identified in total 34 distinct uncertainties, of which the majority (20) are 

Scenario uncertainties, see Table 4 for a complete list. The passenger transport group identified 40 

uncertainties which were more evenly distributed across the different types, see Table 5 for a 

complete list. The remainder of this section provides a summary of the identified uncertainties.  

Uncertainty from international and global events 

One identified type of scenario uncertainty is large-scale societal crises such as pandemics or wars, 

which was identified by both groups. These uncertainties have been highlighted by recent and 



REPORT  2024-02-01 

MUST: Phase 1 Albin Engholm & Ida Kristoffersson 

 

57 

 

ongoing crises such as the COVID-19 pandemic and Russia’s illegal war against Ukraine. Such crises 

are not only highly difficult to predict, but they also tend to generate many hard-to-foresee events 

on various levels, for example: disruptions to supply chains, destabilization of regional and global 

markets, politically imposed interventions (e.g. lockdowns or sanctions), and behavioral change. Such 

events can have direct impacts on the transport system or the demand for transport but also wider 

effects due to shifting preferences among individuals and firms, changing long-term trade flows, 

sourcing strategies, etc. For instance, the rise of telecommuting and e-commerce following COVID-19 

or the diminished trade with Russia, coupled with an increased focus on geopolitical factors in supply 

chain decisions post Russia’s war. Even if these events could be predicted, it is hard predicting 

whether they will be short-term shocks, which once the crisis is averted will subside, or if they will 

constitute fundamental shifts that alters the long-term development trajectory. Also, in the freight 

transport group, it was suggested that Russia’s war in Ukraine might lead to a shift in risk perception 

among policymakers and the with a greater emphasis on national security, and less focus on other 

pressing issues which previously were in focus, such as the climate crisis. This is an example of a 

valuation uncertainty. 

Uncertainty from societal and behavioral development and change 

Both groups highlighted many uncertainties that relate to the broader societal development. These 

included the demographical and economic development of Sweden, international trade-patterns, 

and the influence of shifting geopolitics on these. Also more general preferences and cultural factors 

that affect people’s need for mobility and demand for products and services was highlighted as 

highly uncertain. These factors all affect demand for transport, which was stressed as a key 

uncertainty by both groups. Several uncertain factors that affect the electrification of the transport 

system were mentioned such as. This included the development of the energy system in terms of 

production capacity and transmission capacity, and to what extent they will limit the electrification 

pace. Also the supply of raw materials, and production capacity, for electric vehicle batteries was 

identified. Similarly there is uncertainty in the availability and costs of other types of fuels and energy 

carriers, such as biofuels and hydrogen, and to what extent they will be produced sustainably. Also, 

more transport sector specific uncertainties were highlighted, for instance how the European truck 

driver labor market will develop and to what extent foreign drivers and vehicles will be used for 

transport missions within Sweden. 

Policy landscape uncertainty 

The developments of policies within other sectors and decision domains introduce a different set of 

uncertainties. Examples of such uncertainties that were identified during the workshop are: how the 

climate packages by the EU (e.g. Fit for 55) will play out in terms of actual investments, directives or 

legislation, and the development of Sweden's non-transport-related policies. This can be seen as a 

form of scenario uncertainty. There is also uncertainty from political uncertainty about what 

investments in transportation infrastructure that will be made (e.g. high-speed rails) as well as what 

types of policies, in particular for climate policies, that will be politically acceptable.  

Furthermore, multiple examples of structural policy uncertainty were mentioned. For instance: 

potential for unexpected effects from policy instruments, a general lack of knowledge about the 

efficacy and impact of policy tools on different groups of citizens, as well as different types of 

industries and transport buyers, and the uncertainty in how priorities of different benefits and costs 

(climate, accessibility, particle emissions, noise, safety, robustness, etc.) will develop among policy 
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maker and the general public. Also, the uncertainties in predicating the effects of policies, or 

packages of policies, that have previously not been implemented on large-scale was highlighted.   

Technological uncertainty 

Technological advancements as well as the adoption rates of emerging and future technologies were 

identified as significant uncertainties in both groups. This covered many technology areas such as 

maritime fuels development, the future of battery technology, the advent of self-driving vehicles, the 

trajectory of electrification, the balance between static and dynamic charging infrastructures, and 

the general development of vehicle technology. The ability to forecast these changes accurately is a 

considerable challenge but are important for policymakers as they can substantially affect the supply 

side of the transport system (and therefore indirectly will also affect the demand), as well as the 

impacts in terms of various societal costs and benefits.  

Data and modeling-related uncertainty 

Both groups highlighted multiple general challenges related to how to account for uncertain and 

emerging technologies and phenomena within transport models as well as more specific 

shortcomings of conventional transport models (such as the aggregation of travelers, commodities, 

and vehicle types). The freight group also stressed the uncertainty of the current state of the system 

in terms of the official traffic statistics. For instance, the data of actual traffic and transport work by 

trucks has significant uncertainty, as well as to what share these are being performed by foreign 

trucks and drivers. Also, the data on actual freight demand (e.g. in terms of cargo volumes between 

various geographical  

Prioritized uncertainties based on workshop participants’ votes 

During the workshop, participants were given the opportunity to vote on uncertainties they 

perceived to be of the highest importance or relevance to consider in the analysis performed in WP2. 

Freight Transport Uncertainties with Votes: 

• Transport demand (now and future development) received the highest votes at 4, indicating 
a shared concern about accurately predicting current and future transport needs. 

• Other uncertainties with a single vote included EU policies in the transport sector, trade 
patterns (geopolitics and economic structure), technology and availability of batteries, the 
advent and cost implications of self-driving vehicles, and real behaviors and reactions to 
policy instruments. 

Passenger Transport Uncertainties with Votes: 

• Demography was recognized as a significant uncertainty, garnering 3 votes. This illustrates 
the emphasis on understanding and predicting the impact of population trends on passenger 
transport. 

• Economic development, how the EU governance will evolve, the ability to comply with policy 
instruments, the potential for planning and decision-making to support trends, the 
interpretation and implications of the net-zero target, and the evolution of elasticities over 
time each received 2 votes. 

• Uncertainties with a single vote include the unpredictability of another pandemic, the 
influence of EU governance on national policies, and the limitation of current models 
reflecting only the existing system. 
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The voting suggests that there is a shared concern about predicting transport demand and the 

underlying factors of it, such as trade, demographic shifts, and the economic development. 

Additionally, uncertainties around technological developments, policies (both domestic and 

international), and the impact of large-scale global events (like pandemics) are collectively seen as 

pivotal areas of focus. 
Table 4 Freight transport: all uncertainties identified during exercise 2.1 

Type Uncertainty Votes  

Scenario Maritime fuels and development 
 

Scenario EU policies in the transport sector and other areas. Which EU 
directives do we need to comply with? What technologies is the EU 
investing in (e.g., H2)? 

1 

Scenario Trade patterns (geopolitics and economic structure) 1 
Scenario Crisis and war 

 

Scenario How much space will there be on the railway? (how many passenger 
trains, how many people travel by train today?) 

 

Scenario Transport demand (now and development) 4 
Scenario Electric grid capacity 

 

Scenario Batteries: technology development and availability (raw materials) 1 
Scenario When will self-driving vehicles arrive, and what is the cost of the 

technology? Technology, legislation, acceptance 
1 

Scenario Development of automated transshipment 
 

Scenario Sweden's policies in areas other than transport, e.g., regional policy 
 

Scenario How will the market-driven development of charging infrastructure 
look (different types of static, vs dynamic)? 

 

Scenario Cost structures (transport cost components) 
 

Scenario Economic development (including foreign trade) 
 

Scenario What is happening in the world? China's development? 
 

Scenario Immigration 
 

Scenario How large a share of domestic/foreign drivers 
 

Scenario Vehicle sizes 
 

Scenario Distribution between energy carriers 
 

Scenario Development of vehicle fleet 
 

Scenario "Performance" in vehicles 
 

Structural: trend External factors affecting the market (war, pandemic, climate impact) 
 

Structural: trend Adaptations to the external situation (logistics strategies, priorities) 
 

Structural: policy How companies and households react to taxes, etc. 
 

Structural: policy What policy instruments are available for a transport-efficient society, 
and how effective are they? 

 

Structural: policy Monitoring the effects of policy instruments 
 

Structural: policy "Real" behavior/reactions to policy instruments 1 
Structural: policy How policy instruments affect different segments (commodity types, 

industries, regions) 
1 

Valuation Peace more important than climate - values not static over time 1 
Model Elasticities in the model (scenario tool), assumed linear, are they 

stable for large changes? 
1 

Model Model limitations in Samgods 
 

Model Access to data and statistics 
 

Model Models are simplifications of reality 
 

Model Commodity type aggregation (in the scenario tool) 1 
Model Vehicle type aggregation (in the scenario tool) 

 

 

Table 5 Passenger transport: all uncertainties identified during exercise 2.1 

Type Uncertainty Votes  
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Scenario Black swans  
Scenario Demography 3 
Scenario Economic development 1 
Scenario Cost and availability of electricity  
Scenario Cost and availability of biofuels  
Scenario Cultural differences  
Scenario Another pandemic?  
Scenario Are there enough natural resources for all the batteries needed?  
Scenario Electrification, will it happen and how much?  
Scenario War, crisis. Shortage of raw materials, globalization  
Structural: trend Definitions and system boundaries, e.g., "accessibility"  
Structural: trend Long-term effects of COVID-19  
Structural: trend Sharing  
Structural: trend Digitalization - reduced transport needs  
Structural: trend Variations in effects due to context, combinations of measures, 

network/scale effects 
 

Structural: policy How will EU governance develop and how will national governance be 
influenced by the EU? 

2 

Structural: policy Many stakeholders  
Structural: policy Unexpected effects of instruments  
Structural: policy Uncertainty in the effect of electrification policy, such as bonus-malus  
Structural: policy System boundaries, LCA and assumptions about sustainability/effect 

(e.g., biofuels) 
 

Structural: policy Legitimacy and feasibility of measures  
Structural: policy Ability to comply with instruments (policing) 1 
Structural: policy Potential for planning and decision-making to support trends and 

behaviors 
1 

Valuation Uncertainty in the view of the climate target, vision, or established 
policy? 

 

Valuation What does the net-zero target mean? Uncertainty in the actual goal 
formulation 

1 

Valuation New goals; biodiversity, cultural effects, etc.  
Valuation Valuation and benefit of (travel) time and other abstract valuations  
Valuation Relative valuations of "apples and pears" in models  
Valuation Environmental thinking, political development  
Valuation Sensitive when authorities "invent" economic instruments that are not 

on the political agenda 
 

Valuation Political acceptance  
Model Complex system  
Model Complex models  
Model Lacking data/understanding  
Model Structural uncertainty, linear, step, exponential  
Model Non-quantifiable values  
Model How will (average) elasticities develop over time 2 
Model Model can only reflect the current system 1 
Model Models cannot capture heterogeneity  
Model Uncertainty in model elasticities, applies to driving cost elasticity from 

Sampers in such major changes? 
 

3.2.4 Results Exercise 2.2 

The results from the discussions and written comments generated during Exercise 2.2 are presented 

using the main headings in the pre-prepared workshop document: Areas in the Swedish Transport 

Administration's (planning) activities characterized by deep uncertainty for passenger transport, 

Exploratory Modeling and Analysis (EMA), ideas for other measures or initiatives to handle 

uncertainty, other thoughts. 
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Areas in the Swedish Transport Administration's (planning) activities characterized by deep 

uncertainty for passenger transport 

The freight transport group highlighted that several key inputs for transport forecast rely on 

forecasts or scenarios developed by other agencies. One example is the long-term scenarios for the 

economic development in Sweden by the Ministry of Finance which are central deriving various 

transport forecast inputs related to transport demand. Any uncertainties, and the way such are 

managed (or not) in these other studies are therefore “inherited” to the forecasts by the STA. The 

freight group also highlighted the uncertainties of the technological development within vehicles and 

alternative fuels such as electrification, hydrogen, and automation. 

 

The passenger group reasoned around broad topics such as the need to accept and incorporate that 

there are deeply uncertain factors that cannot be predicted with a high degree of confidence, and 

the need to consider alternative societal and paradigm in the planning process. However, other 

participants questioned to what extent STA should really spend effort on deep uncertainties and 

suggested that focus should rather be on “medium” and shallow uncertainty. Several points were 

raised related to how the concept of accessibility, and its relation to the need for physical mobility 

would develop going forward.  

 

For instance, potential changes to the valuation of travel time from a broader view of accessibility 

which does not only consider mobility. It was also discussed to what extent a more transport efficient 

society can be developed and how the impacts of a combination of physical planning (e.g. location of 

workplaces) and other policies could interact to affect travel behaviors. It was also discussed how 

climate policies will relate to other goals related to the transport sector. Another topic was to what 

extent the development of electrified vehicles and the use of biofuels would significantly affect what 

infrastructure investments are included in the investment plan or not, i.e. does uncertainty in these 

factors have a big impact on the STAs role in planning infrastructure.  

 

Exploratory Modeling and Analysis (EMA) 

Some participants saw EMA (and similar approaches) as useful for “opening up” the planning process 

and to highlight that there are many plausible futures that are legitimate to consider, not just the 

future that is reflected in the STA base forecast. It was seemed as beneficial to have tools that allow 

“the whole” outcome space to be considered in various planning and decision analyses, and not just 

only a single scenario. It was reasoned that the methods for robust decision making mainly are useful 

for irreversible decisions (such as physical infrastructure) while many other measures, for instance 

economic policy instruments, are more flexible, and can be better used for managing uncertainty 

with more dynamic planning methods. It was also mentioned that EMA in combination with more 

simplified models (compared to the conventional national forecasting models) might be useful to 

identify interesting scenarios that can then be studied in detail with the conventional models. Also, it 

was mentioned that EMA in combination with simplified models might be useful to study timing 

effects of policies and investments, as a compliment to current analysis which are mainly done for a 

single forecast year. 

Several challenges for practical use of EMA were mentioned. Participants noted that interpreting 

results can be challenging, and there may be too much information for decision-makers. Some also 

expressed concerns about the ability of EMA to handle large trends with great uncertainty and 
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questioned how trends would be identified or incorporated. One participant stressed that 

uncertainty/sensitivity analysis are already performed in various phases of the planning process for 

transport infrastructure. However, there is still a need to base the impact assessments on a single 

joint main forecast since it is not feasible to make impact assessment of several hundred of 

investment objects of thousands of scenarios.  

 

Ideas for other measures or initiatives to handle uncertainty 

Several ideas for managing uncertainty were brought up:  

• Put more effort on gathering knowledge and experiences from other countries’ forecasting 
efforts. This relate both to their methodologies and approaches, but also to more empirical 
issues, such as identified societal and technology trends and the expected developments of 
these. 

• Broader exploratory analyses and scenarios in the early stages based on a comprehensive 
definition of accessibility; regionalized scenarios in collaboration with other planning levels 
and relevant agencies - leverage regional expertise! 

• A structured approach to testing, evaluating, and learning from interventions - overcoming 
the "catch 22" in knowledge building. 

• Use model results and scenarios as communication tools, i.e., as a basis for discussions, 
rather than as final outputs. 

• Conduct sensitivity analyses that reveal actual effects on various objectives (e.g., effects on 
actual carbon dioxide emissions, rather than being translated to the uncertain cost valuation 
of carbon dioxide, where effects due to model assumptions are usually considered minor 
compared to time savings). 

• Work more qualitatively with uncertainty and potential futures. 

• Engage more in backcasting. 

• Improve impact assessments of control measures/actions within a transport-efficient society. 

• The STA needs to be more agile and use our expertise on traffic work development in a 
broader manner than just the base forecast. 

Other thoughts 

Under this heading, there are two main categories: general thoughts and reflections about 

uncertainty in transport planning, and thoughts relating to the case study in WP2 and for the 

remainder of the MUST project.  

The general thoughts were: 

• This workshop series mainly separated the work into freight and passenger groups. This 
separation might not be beneficial since many uncertainties and issues are common for both 
passenger and freight transport. 

• There is an excessive reliance on quantitative tools: only aspects that can be quantified are 
included. 

• Generally, decision-makers and many others prefer "simple" scenarios with just one or two 
options. They do not “like” uncertainty but rather things that are easily communicated. 

• EU policy is crucial and will likely overshadow national objectives and control measures 
relatively soon (it has already in some cases). This leads to a more complex world to analyze. 
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• It is important to not just consider robustness, but also adaptivity in policy analyses. Many 
policy measures can be understood (and modelled as) dynamically changeable and 
potentially temporary - even international measures are renegotiated, refined, and 
withdrawn. Allow for risk diversification! 

Thoughts that primarily related to the case study in WP2, and other forthcoming work in the project. 

• It is important to remember the responsibility of the Swedish Transport Administration (STA): 
to plan transport infrastructure. What matters for this work? For the STA, biofuels and 
electricity are factors outside of their control; what the STA can influence is the 
infrastructure (and the transport system through support such as urban environment 
agreements, perhaps financing of so called “stage 1 and 2”, co-financing, etc.). Uncertainties 
relating to planning for a transport-efficient society, are more crucial for the STA than 
uncertainties in biofuels and electricity. 

• It would be beneficial to more clearly consider how these tools (EMA and DMDU methods) 
relate to the STA’s core task: planning of physical transport infrastructure. 

• It would be a good idea to collaborate with organization with a detailed understanding about 
transport policy design.  

• It is important with realistic input distributions in EMA analyses. 

• It was questioned the chosen case (climate policy needs) really characterized by deep 
uncertainty. 
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4 Trafikverket’s Scenario Tool: description 
and applicability 

One task in work package 2 is to assess the Scenario tool (version 1.0)11 (Trafikverket, 2020a) and the 

application of it to generate policy scenarios for reaching the climate targets as part of the 

governmental task to develop alternative scenarios for the transport system (Trafikverket, 2020d). 

This assessment mainly aims to provide an understanding of how the Scenario tool can be used as a 

case study in work package 2. In this chapter, there is also a brief summary of the modifications of 

the Scenario tool that have been performed as part of the case study in work package 2. Note that 

the majority of work package 2 is delivered in other deliverables than this report, see Table 1. 

  

The assessment of the Scenario tool was conducted in two steps. First, during Q1 2022, a read 

through of the scenario tool documentation (Trafikverket 2020a) and previous scenario analysis 

(Trafikverket, 2020d) was done. In parallel, the scenario tool was explored to get a feeling for its 

features and behavior. Also, the analyses from the previous scenario analysis were recreated to see 

whether the same results were achieved and if the model behaved as expected. The second step 

consisted of further developing the scenario tool to include effects of driverless vehicles and to utilize 

it as a case study in the robustness analysis of climate policies. This hands-on work gained additional 

insights about the tool. 

4.1 Description of The Scenario tool 
Trafikverket releases a new base forecast for the development of the Swedish passenger and freight 

transport system every fourth year, with minor updates every second year. The latest base forecast 

was released in June 2020 with a base forecast for the years 2040 and 2065 (a new forecast with 

minor updates was released in 2022). A major change in how the 2020 base forecast was developed 

compared to previous base forecasts, is that it assumed that the domestic transport-sector’s climate 

target of reducing annual direct territorial CO2 emissions by 70% in 2030 compared to 2010 levels, 

and the national target of reaching net-zero emissions by 2045 will be achieved, and that 

corresponding policy measures will be taken. An overarching principle for the base forecasts is that 

they should reflect decided policy. Since 2017, the climate goals are part of a Climate Act for Sweden 

and therefore the base forecast needs to align with these climate goals. In their governmental 

instructions for 2020, Trafikverket was given a task to provide alternative forecast scenarios for the 

transport sector and how they relate to the political goals for the transport area, including the 

climate targets (Trafikverket, 2020d). This in turn triggered the development of the Scenario tool.  

 

The Scenario tool (Trafikverket, 2020a) is an Excel-based tool that is intended to support the analysis 

of whether various climate strategies (combinations of policy measures) lead to a future which meets 

the climate goals or not. The Scenario tool covers domestic12 road transport including light vehicles 

 
11 The review has been done for version 1.0 which is available through this link https://bransch.trafikverket.se/tjanster/system-och-

verktyg/Prognos--och-analysverktyg/scenarioverktyget-for-styrmedelsanalyser/  (accessed by the authors 2023-02-07) 

12 Traffic activity performed at swedish territory 
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(cars and light trucks13), heavy trucks and, partly, bus traffic. The scenario tool is developed to study 

climate strategies that include three types of policy measures 1) an increased share of electric 

vehicles and more fuel-efficient vehicles, 2) an increased share of renewable fuels, 3) reduced road 

traffic activity. More specifically, the Scenario tool allows the user to evaluate measures regarding  

• blending of sustainable biofuels14  

• fuel tax 

• kilometer tax  

• share of electric vehicles (only a choice between two levels – decided or ambitious politics) 

• energy efficiency  

• external reduction of vehicle kilometers travelled from e.g., transport planning and parking 
policy measures and  

• energy use from buses 

The Scenario tool is intended to mimic how the conventional transport models used for producing 

national forecasts in Sweden, Sampers (for passenger transport) (Beser & Algers, 2002), Samgods (for 

freight transport) (Bergquist et al., 2020; de Jong & Baak, 2020) and Bilparksmodellen (for car fleet 

modelling) (Beser Hugosson et al., 2016) reacts on changes in driving costs (including both variable 

and fixed costs for passenger cars but only variable costs for trucks) at an aggregate level. Using the 

Scenario tool, alternative forecast scenarios can be made for the years 2030 and 204015.   

 

The starting point for the Scenario tool is a default reference scenario based on the base forecast 

from year 2018 using Sampers and Samgods for passenger cars and trucks respectively, which 

contains assumptions on population growth and car ownership for the Swedish population for the 

years 2030 and 2040. From this starting point, the scenario tool calculates changes based on the 

policy measures the user enters the tool. This calculation of changes is done in three steps: 1) 

calculation of changes in driving costs, 2) calculation of changes in vehicle kilometers travelled and 3) 

calculation of updated effects (CO2 emissions, energy use and tax revenues). Elasticities intended to 

mimic the behavior of the national models are used in step 1) and step 2) as described above. The 

elasticities are summarized in Table 6.  Driving costs for vehicles using different types of fuels or 

propulsion technology are first calculated separately in step 1. However, for the subsequent steps, 

the driving cost is expressed as a weighted sum of different vehicle types based on their share of 

total VKT.  
Table 6 Default elasticities used in the Scenario tool. 

Elasticity 2030 2040 
Used in 

step 

Passenger cars changing to electric in response to fuel price 0.07 0.19 1 

Fuel consumption in response to fuel price for diesel and petrol 

passenger cars 
-0.05 -0.05 1 

Fuel consumption in response to fuel price for diesel trucks 0.00 0.00 1 

 
13 With maximum permissable weight less than 3.5 tonnes 

14 Swe: “reduktionsplikt” 
15 Year 2040 has been used instead of 2045, since 2040 is the forecast year in the national base forecast.  
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Car ownership for passenger cars in response to driving cost -0.10 -0.10 2 

Vehicle kilometers travelled for passenger cars in response to driving 

cost (excluding the effect of car ownership) 
-0.20 -0.20 2 

Vehicle kilometers travelled for trucks in response to driving cost  -0.22 -0.22 2 

4.2 Previous work by Trafikverket for identifying climate 
strategies using the Scenario tool 

Trafikverket have, using the Scenario tool, identified eight climate strategies that manage to reach 

the climate target for the base scenario, which vary in the combination of policies applied to reach 

the goal (Trafikverket, 2020d). In other words, these climate strategies are by design goal fulfilling 

and illustrate different ways of reaching the climate targets, assuming the development of other 

factors in line with the reference scenario. All eight climate strategies apply ambitious politics (in the 

choice between decided and ambitious politics) for the share of electric vehicles in the fleet, i.e., it is 

assumed that national Bonus-Malus measures are added to the already decided EU-requirements for 

vehicle manufacturers regarding vehicle emission levels with a corresponding resulting electrification 

rate of the vehicle fleet. The eight climate strategies are summarized in Table 5. Details on policy 

parameter settings and results are available in (Trafikverket, 2020a).  
Table 7 Climate strategies (scenarios) developed by Trafikverket using the scenario tool (Trafikverket, 2020d). 

Climate 

policy 

strategy 

Description 

B Biofuel scenario 

C1 High fuel tax, biofuel use limited to 20 TWh in 2030 

C2 Fuel and kilometer tax, biofuel use limited to 20 TWh in 2030 

C3 High fuel and kilometer tax, biofuel use limited to 13 TWh in 2030 

C4 High fuel tax, biofuel use limited to 13 TWh in 2030 

D1 
External reduction of VKT, fuel and kilometer tax, biofuel use limited to 20 TWh in 

2030 

D2 
External reduction of VKT, high fuel and kilometer tax, biofuel use limited to 13 TWh 

in 2030 

D3 
Large external reduction of VKT, high fuel and kilometer tax, biofuel use limited to 13 

TWh in 2030 

 

Two of the policy strategies identified using the Scenario tool, namely: B and C2 were thereafter 

analyzed more in-depth, see Trafikverket (2020e) for details. This analysis was made using the 

national forecasting models Sampers and Samgods in which the corresponding policy strategies were 

represented. Policy C2 includes fuel- and kilometer-taxes that will substantially increase driving costs 

for trucks and cars. These taxes were estimated to increase the average driving cost for cars by about 

50%, and for trucks by around 75%, compared to a reference policy strategy based on the previously 

decided policy at the time of the analysis16. This increase in transport costs could negatively affect 

accessibility and therefore also the economic activity as well as production volumes and trade 

 
16 The reference policy strategy was forecasted to reduce direct CO2 emissions by roughly 45% until 2030 and 
60% until 2040, both compared to 2010. 
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patterns of different commodities. Since Samgods relies on an exogenous, fixed, matrix of freight 

volumes between each model zone, a new freight demand input matrix for the Samgods model was 

calculated to account for the increase in driving cost. Based on the model results from Sampers and 

Samgods, an assessment of the two policy strategies in terms of monetized societal costs and 

benefits over a 40-year analysis horizon was made. This assessment was made using cost-benefit 

appraisal covering: producer surplus, budget effects, consumer surplus, external effects (excluding 

CO2 emissions since a specific reduction is a prerequisite of the analysis), maintenance and re-

investments, and welfare effects from changes in economic activity due to changed transport costs. 

The societal benefits and costs for each of the two policy scenarios were compared to the reference 

policy strategy based. The analysis by Trafikverket (2020e) estimated that both policy strategy B and 

C2 would generate a net loss in terms of societal costs and benefits (total costs are higher than total 

benefits). However, the estimated loss is substantially greater for strategy C2: - 2 240 billion SEK for 

C2 compared to -70 billion SEK for B. Following this analysis, policy strategy B has been adopted as 

the presumed transport climate policy in subsequent base forecasts up until currently (Trafikverket, 

2020c). 

4.3 Applicability and limitations of the Scenario tool 

The main aim of the Scenario tool is according to Trafikverket (2020a, p. 6) to simplify analyses of the 

road transport sector’s CO2 emissions. Furthermore, it is stated that the conventional forecast 

models that produce more disaggregate and detailed forecasts (Sampers and Samgods) are complex, 

require a large and broad set of input and are time- and resource intensive to run. Therefore, they 

are practically unsuited to use for identifying goal-fulfilling scenarios by iterating over parameter 

space of policy lever combinations. The Scenario tool can therefore be used to on an overarching 

level quickly test many policy combinations to identify a set of policy candidates. It is highlighted that 

the Scenario tool is suited for high-level analysis on the national level, primarily due to its aggregated 

representation of vehicles and transport demand, and simple representation of complex causal 

relationships (e.g. between driving costs and transport demand, and changes in the vehicle fleet 

composition). To summarize, Trafikverket describes the Scenario tool as an option to quickly perform 

rough, aggregate analyses of climate policies iteratively and exploratory.  

 

The Scenario tool can be used in a sequential process in conjuncture with the conventional 

forecasting models in which the Scenario tool is first used to identify policy candidates based on their 

estimated impacts. The Scenario tool provides an approximation of the corresponding input data for 

representing these policies in Sampers or Samgods. The candidate polies can therefore then be 

analyzed more in detail with these models to provide data for more comprehensive decision support 

(e.g. analysis of societal costs and benefits, distribution effects, etc.). In the analysis by Trafikverket  

(Trafikverket, 2020d), this process with a detailed analysis in Sampers and Samgods, was applied to 

two of the eight policies identified with the Scenario tool. The reason why only these two scenarios 

were analyzed in with Sampers and Samgods is not clear from the reports, but it can be assumed that 

the resource demanding implementation and analysis of results as well as conceptual challenges with 

representing measures for transport efficient planning (which are considered in policy strategies D) 

contributed. This situation highlights how a less detailed, but also more flexible and faster model, 

such as the Scenario tool, and more detailed, but less flexible and more resource demanding models, 

such as Sampers and Samgods, can complement each other. Firstly, the less detailed model can be 

used to generate policy options which are then analyzed more thoroughly with the more detailed 
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model. Secondly, the less detailed model can sometimes be used to generate a first-order estimation 

of impacts of scenarios or policies which are challenging to represent from a conceptual or resource 

perspective within the more detailed model. In this sense, simpler models might enable a broader 

exploration of scenarios or policies. In addition, the simpler model can enable more systematic and 

extensive sensitivity- and uncertainty analysis, or optimization-based analyses, which typically 

requires evaluation of a large number of model instances. Therefore, less detailed models might be 

more appropriate to use for various DMDU applications. 

 

In the case study in work package 2, it is explored how the Scenario tool can be further leveraged by 

DMDU. More specifically, MORDM (see Section 2.2.3) is applied to assess to what extent it may allow 

a broader set of policy options to be explored, and how it can provide a better understanding of the 

robustness and vulnerabilities of different types of policies. This analysis will be published as a 

separate research paper17. The remainder of this section will present an assessment of the Scenario 

tool, followed by a brief summary of modifications to the Scenario tool which have been done within 

the aforementioned case study. The modified Scenario tool, and all code used for the MORDM case 

study will be published in a public code repository.  

 

The assessment of the Scenario tool identified limitations and weaknesses of the tool. Some of these 

are already mentioned in Trafikverket’s documentation of the tool (Trafikverket, 2020a). The findings 

of the assessment are summarized in Table 8. Please note that the assessment is not exhaustive and 

that it contains remarks of different nature. Some remarks relate to conceptual issues about system 

boundaries, model design choices and assumptions, while others concern the technical 

implementation, and the user friendliness of the tool. Furthermore, this assessment is not intended 

as a critique of how the tool was designed and applied for its original purpose. Some of the things 

pointed out are design choices that are well-suited for the analysis the Scenario tool was initially 

developed for. Furthermore, for the assessment of the Scenario tool was used for, some of the 

limitations were remedied by that a selection of scenarios identified through the scenario tool where 

also analyzed in Sampers and Samgods, which allowed some of the simplified relationships in the 

scenario tool to be studied more in detail, and to study various effects that are not covered by the 

Scenario tool, for instance accessibility impacts. The purpose of this assessment is rather to describe 

what type of problems the tool is more or less suitable to be applied for and provide a basis for 

further development for other applications. 

 
17 If the paper is not published when you are reading this report, contact Albin Engholm: aengholm@kth.se for 
more information.  

mailto:aengholm@kth.se
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Table 8 Identified limitations and simplifications in the Scenario tool.  

Type Issue Addressed in MUST WP2 case 

study? 

Design and 

assumptions 

The validity and quality of the various elasticities used in the tool can be questioned. All 

elasticities are assumed linear. Some of the elasticities derived from 

Samgods/Sampers/bilparksmodellen are based on old analyses on similar, but not identical, 

scenarios and cost changes as the ones studied with the scenario tools. Other elasticities are 

based on (undisclosed) expert judgement or international research literature. Some scenarios 

studied using the Scenario tool result in substantial changes in driving costs (+100% for private 

cars and +300% for heavy trucks). It is not clear whether the elasticities are valid, and linear, for 

such large changes in cost.  

Model elasticities which are 

considered uncertain are 

included as uncertain 

parameters when performing 

robustness analysis 

Design and 

assumptions 

The Scenario tool is highly aggregate in several dimensions: vehicle types (e.g. aggregated to one 

type of powertrain), geography (all calculations are on national level), trip-purposes (no 

separation), commodity types (no separation) and cost components (no separation into e.g.  

fixed, time-dependent, distance dependent) when calculating changes in driving costs and the 

resulting impacts on demand. This level of aggregation be argued to be too extensive even for a 

highly simplified model as the Scenario tool. 

No 

Design and 

assumptions 

The distribution of truck traffic between different truck weight classes or powertrains is static. 

The choice not to account for shifts to battery electric trucks as a result from increases in driving 

costs for diesel trucks (which in some of the studied scenarios is in the order of several hundred 

percent) is motivated by a lack of foundational data for including this effect (Trafikverket, 2020a, 

p. 12).  

Partly. A shift to electric trucks 

due to increased driving costs is 

included as an uncertainty when 

performing robustness analysis.  

Design and 

assumptions 

The modeling of electrification policy is highly limited with only two levels of electrification to 

choose between. All evaluated climate policy strategies assume the higher level.  

Yes. Electrification rate is 

modeled as an external factor in 

the case study and the extent of 

it is varied in the robustness 

analysis. 
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Design and 

assumptions 

No direct possibility to evaluate impacts of scenarios with different economic developments. No 

Design and 

assumptions 

Fuel and energy costs are modeled as independent to fuel demand. This might be important for 

biofuels for which there might be supply shortages. 

 

No 

Design and 

assumptions 

No dynamics, such as time delays, or other time dependent effects in system response to 

policies. 

No 

Implementation 

and bugs 

In general, there is a lack of “reality checks” and handling of infeasible results. For instance, 

negative demand can occur in the model if demand elasticities are assumed larger than the 

default values and/or driving costs are increasing substantially. 

 

No 

Implementation 

and bugs 

A few minor bugs have been identified and corrected: 

• Error in calculation of changes in fuel consumption due to fuel prices for heavy trucks. 

• Error in calculation of traffic volumes. Both the 2030 and 2040 calculations were based 
on the demand elasticity for 2030. This has not affected the previous analyses since by 
default, both elasticities are the same. 

• Error in calculation of fuel tax for diesel for which the gasoline fuel tax change input 
parameter was used. This has not affected the previous analyses since the same fuel tax 
change rate was applied to both diesel and gasoline in all scenarios. 

Yes, corrected. 

Scope and 

metrics 

Only emissions from road transport are included which means that the definition of climate 

target fulfilling policies is not fully aligned with the climate target definitions (which cover all 

domestic emissions from transport). 

No 

Scope and 

metrics 

Only direct emissions, i.e. tank-to-wheel are considered. There are no metrics for life-cycle 

emissions of fuels, electricity, or vehicles. Considering emission impacts on other non-transport 

sectors might be one relevant factor to consider for crafting robust transport climate policies, in 

addition to the direct emissions covered by the transport sector’s climate target. 

No 

Scope and 

metrics 

Electric cars and trucks are the only technology innovation considered. Other potential 

developments such as automated driving and digitalization of the transport system are not 

considered 

Yes. Automated vehicles are 

considered and modeled in the 

case study. 
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Scope and 

metrics 

No metrics for accessibility losses. This might be particularly important for car users outside 

cities.  

No 

Scenarios and 

uncertainty 

Only nine policy strategies are evaluated (one reference policy and eight goal-fulfilling policy 

strategies). It is not fully clear how these strategies were designed and to what extent they span 

the plausible decision space. 

Yes. A large set of Pareto optimal 

policies are generated using 

optimization in the case study. 

Scenarios and 

uncertainty 

All policy strategies are only evaluated against a single reference scenario (corresponding to the 

base forecast). This scenario contains many uncertainties such as future fuel and energy prices, 

economic development, trade patterns, etc. These developments of these factors affect the 

policy needs for reaching the climate target climate policies, and different policies might perform 

better or worse in different types of scenarios. 

Yes. An extensive uncertainty 

and robustness analysis is 

performed in the case study. 



As shown above, there are many possible development areas for the scenario tool. In the case study 

in WP2 a few of them are addressed which are important for enabling the intended analysis. For the 

case study, the following modifications to the scenario tool have been made.  

• The identified bugs were corrected. 

• The reference Scenario was updated. Since the Scenario tool was developed, new base 
forecasts (the 2020 and 202318 editions) have been published. The input data and reference 
scenario has been updated to align with the base forecasts of 202319 which primarily 
consisted of a minor adjustment of forecasted transport demand and updating the 
assumptions about electrification rate and biofuel shares in line with Table 920.  

• A module to enable a crude analysis of potential impacts of automated driving technology 
(driverless vehicles) was added. Driverless vehicles are assumed to impact driving costs and 
energy efficiency, see the orange box in Figure 19. To facilitate this, also non-fuel/energy 
related costs for trucks are included (derived from ASEK 7), and, the elasticity for truck traffic 
in response to changes in driving costs has been adjusted accordingly. More details on the 
modeling of driverless vehicles are provided in the research paper. 

• To reduce the number of decision variables when applying optimization to identify policies, a 
single lever has been introduced to denote the total volumetric admixture of biofuels for 
diesel and gasoline, respectively. This lever can be used to override the individual levers for 
different types of biofuels from the original version. The new mechanism prioritizes FAME 
and Ethanol over HVO since they are generally cheaper, up to a threshold at which the 
chemical quality of the fuel is affected, assumed at 7% for FAME and 10% for Ethanol 
(Trafikverket, 2020b), beyond which HVO is used. 

• In the case study, the Scenario tool is not used via its Excel interface. Instead, it is set up and 
run via Python, using the open-source library EMA-workbench (Kwakkel, 2017). A new sheet 
in which all inputs are specified, and all outputs are read from, is added to streamline the 
communication between the Scenario tool and Python. 

Table 9 Assumptions for electrification rate and degree of admixture of biofuels used for the 2020 and 2023 base forecasts. 
These values are, in the base forecasts, assumed to be consistent with reaching the Swedish climate targets for 2030 and 
2045. 

Assumption Value used for 2040 in base forecasts 2020 and 

2023 

Electrification rate, share of VKT [%] Cars: 68% 

Truck <3.5t: 68% 

Truck <16t: 85% 

Truck <24t: 85% 

Truck <40t: 36% 

Truck <60t: 19% 

Biofuel shares of gasoline fuel volume [%] Ethanol: 10% 

HVO: 63%  

 
18 The 2023 edition is a revision of the 2020 forecast to account for changes in planned infrastructure investments. All other key 

assumptions and inputs are equal to the 2020 forecast. 

19 Only the values for 2040 have been updated, since this is the year studied in the case study. 
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Biofuel shares of diesel fuel volume [%] FAME: 7% 

HVO: 63% 

 

Figure 19 Overview of the calculation steps within the Scenario tool and an indication of how driverless vehicles 
technology is included. 
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5 Concluding discussion 
Phase 1 of the MUST project covered three main activities: a literature review and workshop series 

(work package 1), and a case study in which MORDM was applied to Trafikverket’s scenario tool 

aiming to improve transport climate policy making under deep uncertainty (work package 2). The 

remainder of this section summarizes overarching conclusions and reflections that have emerged 

throughout this work. 

 

At its core, uncertainty is a limited knowledge of past, current, or future events. Deep uncertainty 

refers to situations where it is challenging to assign probabilities due to system complexity, scarce 

information, or inherent unpredictability of complex systems. Deep uncertainty leads to a need to 

consider a multiplicity of futures, which is typically challenging in conventional model-based planning 

or policy analyses, since they tend to rely on a “predict-then-act” framework in which forecasts 

generated with (relatively) computationally demanding transport models are used as the underlying 

basis for policy analysis. Both the literature and workshop results suggest that uncertainty is widely 

acknowledged as being present in many stages of planning and policy analyses processes. There is 

thus a need to more systematically account for it in the planning and policy analysis practice. Current 

Swedish transport planning practices and policy analyses in general, and the planning of national 

infrastructure, are in several central aspects characterized by standardized point estimates of 

uncertain, ambiguous, or complex variables. For instance, the use of a joint single reference scenario 

(the base forecast) and associated input assumptions for impact assessment of investments, policies, 

or other measures; and the use of standardized weighting of objectives (i.e. impact valuation and 

other parameter assumptions for calculation of societal costs and benefits for performing cost-benefit 

analyses). This standardization has solid motivation, for instance to ensure comparability between 

analyses of different objects (e.g. comparison between different investment options), and to enable 

easy-to-interpret metrics for decision support (e.g. a single metric of cost-benefit ratio for a single 

scenario). However, this standardization also means that a set of specific assumptions about the 

future, and valuation of outcomes, gets “locked in” as a central planning prerequisite. This 

prerequisite can be expected to limit to what extent analysts put emphasis on uncertainty, how 

sensitivity analyses are constructed and to what extent policy makers consider it.  

 

The results from the literature review and workshop series both suggest that the deep uncertainty in 

model-based analysis in the transportation domain often relates to specifying model inputs, so called 

scenario uncertainty. For instance, this was a key result of the uncertainty analysis of the base 

forecast process performed during workshop 2 which identified many deep scenario uncertainties 

both for passenger and freight transport (see Section 3.2). Scenario uncertainty is not alleviated by 

developing “better” models (in the sense of the model making more accurate predictions for a given 

set of inputs). Instead, managing scenario uncertainty either requires improving the prediction of 

model inputs, which might be costly to achieve, or even infeasible due to ontological uncertainty, or 

that the decision analysis process is adapted to account for scenario uncertainty. The ubiquitous 

presence of (deep) scenario uncertainty in many transportation planning and policy making 

applications is a key motivation for why Exploratory Modelling and Analysis (EMA) and Decision 



REPORT  2024-02-01 

MUST: Phase 1 Albin Engholm & Ida Kristoffersson 

 

75 

 

Making Under Deep uncertainty (DMDU) can be beneficial approaches for improving model-based 

transport planning and policy analysis, since they offer concrete tools for managing such uncertainty. 

While it is important to continuously improve transport models, e.g. in terms of the modeling of key 

decisions of different actors in the system, the level of resolution and detail, and the representation 

of current and emerging technology, behaviors, and preferences, it is also important to systematically 

improve how to use and apply these models to generate relevant and appropriate decision support in 

the presence of (deep) scenario uncertainty. An overarching insight from the literature review and 

workshop series, is that in the transport modeling practice, for applications related to planning and 

policy analysis, this is an area with potential for improvements. 

 

Another important area of uncertainty relates to the modelling of policies, or combinations thereof, 

which have previously not been implemented or properly evaluated. This may imply a high degree of 

uncertainty about the policy impacts, efficiency, and costs, and that it is not clear how to 

appropriately represent the policy in the transport model. Examples could be policies to support 

large-scale electrification of cars and trucks, or measures for achieving a higher degree of transport 

efficiency. On a conceptual level, DMDU is capable of accounting for such uncertainty through 

exploratory modeling. Using the XLRM framework (Figure 6), uncertain policy impacts can be 

represented as parametric uncertainty and accounted for in uncertainty or robustness analysis. 

Similarly, uncertainty about policy representation could be managed by using alternative model 

formulations. However, it is noted that DMDU does not support how policies could be represented in 

various model specifications, which might in practice be a more challenging issue than accounting for 

this uncertainty once alternative model formulations are specified and implemented.   

 

The literature on approaches for dealing with deep uncertainty in model-based policy analysis has 

developed substantially during the last decade. One important development is the emergence of 

DMDU as an umbrella term, and a distinct research field, combining existing and emerging DMDU 

approaches. This seems to have sparked research towards a broader and more general understanding 

of DMDU and how its various tools and approaches differ, when and how they are complementary 

and the appropriateness of different approaches for different types of policy problems and domains. 

There is also a growing number of case studies applying different DMDU methods to various 

problems. Furthermore, the field has benefitted from the development of well-maintained open-

source software supporting DMDU, such as the general-purpose EMA-Workbench21 (Kwakkel, 2017), 

and the transportation modeling focused TMIP-EMAT (Lemp et al., 2021). The availability of these 

tools has lowered the barrier for experimenting and implementing DMDU for researchers and 

practitioners. It is also noted that there is an active DMDU research community (DMDU Society22) 

which, among other activities, has held annual meetings since 2013. However, as noted by Stanton 

and Roelich (2021), the DMDU literature has to a large extent so far been focused on method 

development and prospective case studies with limited effort on the policy making context and how 

DMDU can be successfully applied for real-world policy making.  

 

 
21 EMA-workbench is available at: https://github.com/quaquel/EMAworkbench 
22 https://www.deepuncertainty.org/, latest accessed by the authors 2024-01-11. 

https://www.deepuncertainty.org/
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An overarching insight from MUST phase 1 is that DMDU has potential to improve transport planning 

and policy analysis, since it offers systematic approaches for accounting for scenario uncertainty and 

policy impact uncertainty. Given the increasing maturity of the DMDU research field, and availability 

of tools, it is tractable to seriously explore and assess the practical usefulness of various DMDU 

approaches for different planning and policy issues and in various phases thereof. The purpose of the 

case study in work package 2 and of MUST phase 2 is to make initial work on such an exploration in a 

Swedish transport context by using real-world policy problems and models used by the Swedish 

Transport Administration. For specific, stand-alone, infrastructure investment analyses or policy 

analyses, these approaches may be relatively straightforward to implement without significantly 

additional effort. For instance, many methods for robust decision making are simple to apply in cases 

where there are predefined planning or policy options, given that the system model can be used to 

represent the deep uncertainties of interest.  

 

It is, however, presumably a fairly long way to go for DMDU to become a core approach within the 

standard national transport infrastructure planning practice. Although there is a broad trend for 

transport planning in general to develop more into scenario-based approaches (Lyons et al., 2021) the 

current practice follows a clearly defined, but complicated and resource demanding, process which 

has its roots in a “predict-then-act” paradigm (Lempert et al., 2003). Also, this process is to a large 

extent bounded by politically decided regulations. A central issue is to consider and assess to what 

extent DMDU can and should be used during different stages of the planning process. Also, it needs 

to be analyzed to what extent DMDU can and should constitute a complement to existing practices or 

whether it would be required to more fundamentally adjust certain parts of the planning process. 

Applying DMDU to existing national transport models (Sampers and Samgods) requires a non-

negligible amount of work to adapt the models and their infrastructure to enable EMA or DMDU. It 

requires the development of tools that supports to automatically generate, implement, run, and store 

relevant results from hundreds or thousands of scenarios. The EMA model infrastructure developed 

in MUST phase 1 is primarily designed for (semi-) manual scenario handling, and the scenario data 

consists of GBs of data. Furthermore, the rather long computation time of these models is an issue 

that needs to be accounted for and managed. In phase 2 of MUST, EMA is applied to the Samgods 

model and some of these issues will be explored. Another broader concern relates to how an 

increased use of DMDU approaches could affect transparency, and complexity of the decision support 

both for policy makers and citizens more generally.   
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Appendix 

Workshop series 
Table 10 Participants in Workshop 1. 

Name Organization 

Ida Kristoffersson VTI 

Sabrina Brunner VTI 
Albin Engholm KTH ITRL 

Anna Pernestål KTH ITRL 

Jacob Witzell VTI 

Rune Karlsson VTI 

Johanna Takman VTI 

Stefan Kurki Trafikverket 

Marcus Sundberg Trafikverket 

Peter Almström Trafikverket 
 

Table 11 Analysis needs from Exercise 1.1 that the freight transport group did not have time to map 

Analysis need Assosciated uncertainty 

Validation of the Samgods model Difficult to validate – data is lacking. Detailed 

validation is challenging due to unclear definitions 

(e.g. vehicle types). Deficiencies in ASEK values. 

Understand impacts on freight transport 

demand due to increasing fuel prices 

Modal distribution? New routes? Increased cargo 

consolidation? 

Understand impact on choice of 

transport mode due to automation of 

freight transport (trucks) 

Will there be a modal shift? Impact on driving 

times, routes, costs, emissions? 

Impacts of changes fees and taxes 
 

Need for maintenance and new road 

infrastructure 

 

Where should charging infrastructure be 

built 

Where is charging demand? Where is electricity 

supply? 

Potential for measures for “transport 

efficient society” 

How to model this? Data needs? Effect measures of 

interventions 

Corridor-analyses (e.g. central Sweden to 

northern Germany) 

 

Efficient policies for reaching the climate 

targets 

System boundaries. Scenario assumptions. 

Emission calculations 

How will road transport volumes be 

affected by electrified trucks?  

Electrification rate 
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Will 5G have any impact on transport 

(volumes, locations, speeds)? 

 

Contact surface road/rail/sea. How 

achieve modal shift from road to sea and 

rail in general? 

 

How will the split between different 

types of fuels and energy sources look 

like? Electricity, H2, bio-diesel, etc.? 

What affects this distribution? Energy prices, 

battery prices, charging availability, etc. 

Share of electro mobility in truck fleet. 

Which freight companies will electrify 

their transports? 

Battery development (technology uptake). 

Availability of charging infra who/when/where. 

How will business models for freight companies 

change due to new technologies? Chicken-egg 

problem: electric trucks <-> charging infrastructure.  

How will different policy measures affect 

transport flows? 

 

Policies and the policies for the future?  

 
Table 12 Participants in Workshop 2. 

Name Organization 

Ida Kristoffersson VTI 
Albin Engholm KTH ITRL 

Erik Almlöf KTH ITRL 

Jacob Witzell VTI 

Inge Vierth VTI 

Helen Lindblom Trafikverket 

Disa Asplund Trafikverket 

Jenny Karlsson Trafikverket 
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Figure 20 Headings and supporting questions used as a basis for the discussion in Exercise 2.2 
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