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SHORT SUMMARY

In this paper, a new calibration method for road capacities in urban networks is presented. The
method relies on partial least squares (PLS) regression, which combines calibration and dimen-
sionality reduction capabilities. A sampling strategy is implemented to further improve the cali-
bration efficiency and accuracy. Moreover, influences of different parameters on calibration results
are investigated. This method is demonstrated to be feasible and efficient in an urban road network
(Stockholm, Sweden).
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1. INTRODUCTION

Traffic simulation models are important for describing urban congestion and estimating travel
times. The quality of the estimates provided by traffic simulation models depends critically on
the way in which network capacity is represented. The present work considers network models
in which road capacity is exogenously represented by attaching a capacity parameter to every
homogeneous road segment, with this parameter specifying the maximum number vehicles that
could pass this road segment in one time unit. Thus, calibration of the capacity parameters is
essential in order for the model to represent an actual traffic network.

Research problem and potential issues

The calibration problem in our case is presented as following: Given a road network simulation
model that is parameterized with one capacity value per homogeneous road segment, and given
link flow measurements, the objective is to calibrate the capacity parameters on all links in the
network.

The capacity calibration problem is solved through a minimization problem in which the squared
distance between the observed output (flow) vector and the predicted one obtained from the esti-
mated capacities needs to be minimized.

A frequently-encountered calibration method includes numerical estimation of the full Jacobian
matrix (sensitivity analysis) (Cascetta, 1984), aiming at finding the local linear approximation
between the input and output variables. The issue is that high dimensionality (number of links)
in networks introduces great complicity. This classical calibration method, consisting of series of
iterations in which estimation of local Jacobian matirx is computed, faces computational efficiency
problems.



One of the most popular methods for improving efficiency of estimating the full Jacobian matrix
is Simultaneous Perturbation Stochastic Approximation (SPSA). It simplifies multivariate opti-
mization problems by approximating gradient with only a small number of measurements per
iteration in which all variables are varying randomly in a proper way (Spall, 1992). Nowadays,
some works investigate modifications and variations of SPSA method to achieve higher efficiency
or better robustness, such as weighted-SPSA (Lu, Xu, Antoniou, & Ben-Akiva, 2015) (Antoniou,
Azevedo, Lu, Pereira, & Ben-Akiva, 2015) and cluster-wise SPSA (Tympakianaki, Koutsopoulos,
& Jenelius, 2015).

Contribution

The present work aims to overcome the challenge of estimating full Jacobian matrix by reducing
problem dimensionality simultaneously with estimating a relatively small Jacobian matrix of link
flows (measurements) with respect to capacities (decision variables). The purpose is similar to
SPSA in terms of improving computational efficiency but from a different perspective. For this,
the partial least squares (PLS) regression method is applied (Geladi & Kowalski, 1986). PLS
regression has been broadly used in chemometrics, e.g. (Godoy, Vega, & Marchetti, 2014), but
has to the best of our knowledge not yet been accessed in the area of traffic model calibration.

Compared to principal components analysis (PCA), which has been used in traffic calibration
problems, PLS regression has following advantages:

1. Since loading vectors (approximately can be regarded as principal components) are considered
pairwisely, only the diagonal elements in the regression matrix needs to be calculated. This will
be illustrated in a more detailed way in latter sections.

2. In order to achieve the same level of approximation, less components are needed in partial least
squares regression (PLSR) than in principal components regression (PCR). (Helland, 1988).

Since dimensionality reduction is introduced in PLS, it is potentially more suitable for the cases
in which the number of output measurements is smaller than that of input variables needing to be
estimated when compared with other calibration methods without dimensionality reduction.

2. METHODOLOGY

Figure 1 outlines the calibration approach in our work. The method is iterative, with each iteration
comprising the following steps in Figure 1.

1. Generation and evaluation of trial points. Variations of a current capacity solution vector
are generated. For each variation, a simulation run is conducted and the resulting simulated
network flows are obtained. These trial points are used as training data to find local linear
approximation in the following step.

2. Joint linear approximation and dimensionality reduction. The Partial Least Squares
(PLS) algorithm is adopted to estimate a low-dimensional linear regression model approx-
imating the high-dimensional simulator mapping of link capacities onto network flows to
achieve computational efficiency improvement.

3. Capacity update. An improved capacity estimate is obtained by solving a quadratic opti-
mization problem based on the most recently obtained linear simulator approximation.

The remainder of this section details these steps, with a particular focus on the PLS regression
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Figure 1: Flow chart of the proposed method

method. Table 1 lists the mainly used symbols.

Table 1: Main symbols

symbol | meaning

m dimension of input variables (capacities) and output vari-
ables (flows), i.e. number of links

n number of trial points used in PLS regression

o variation coefficient in Step Generation and evaluation of
trial points

X mean-centered matrix of input trial points, size: n X m

Y mean-centered matrix of output trial points, size: n X m

X; the mean-centered input matrix in i-th outer loop in PLS
regression, size: n X m

Y; the mean-centered output matrix in i-th outer loop in PLS
regression, size: n X m

pi i-th loading vector in input space, size: m X 1

t; i-th score vector in input space, size: n x 1

qi i-th loading vector in output space, size: m X 1

u; i-th score vector in output space, size: n x 1

a the number of loading vector pairs used, i.e. dimension after
dimensionality reduction operation

b; the regression coefficient in i-th outer loop (of u; on t;) in
PLS regression

Generation and evaluation of trial points

A network with m links and a current best capacity vector estimate is given. A trial capacity vector
is obtained by independently and uniformly varying each capacity value in a range of 0 times its
current value. Overall n trial capacity vectors are generated. Each capacity vector is then evaluated
in a road traffic simulator and corresponding network flows are obtained.



Omitting an iteration index, the resulting n (capacity, flow) vector tuples are denoted by (x,,y,),
with r the replication index within the given algorithm iteration. Both capacity and flow vectors
are mean-centered in an immediate post-processing step.

Joint linear approximation and dimensionality reduction

Assume a set of mean-centered input/output (in the present application, capacity/flow) data tuples
(X,,¥r), r = 1...n, to be given, with both input and output being m-dimensional vectors. We are
interested in estimating a linear model relationship between independent (input) variables x and
dependent (output) variables y. We further assume that n, the number of observations used in PLS
regression, is relatively small compared to m, the dimensionality of the model’s in- and output
space.

To arrive at an identifiable model, we reduce the dimensionality of both in- and output space from
dimension m to dimension a. The low-dimensional representation of the input space is spanned
by loading vectors p;, i = 1...a, and every input vector X, is represented as a linear combination
of these loading vectors:
a
Xy = Ztripi+fr (1)
i=1
where the score t,; represents the contribution of the i-th loading vector to x, and f, absorbs the
approximation error in input space. Symmetrically, the output space is spanned by loading vectors
q;, i=1...a
a

Y= Uriq; + gr (2)

i=1

with u,; and g, being specified symmetrically to #,; and f.. Given the loading vectors, the input and
output vectors are hence encoded by the score vectors

t, = (l‘ll‘...l‘m')T (3)
u = (uli...um-)T (4)

with i = 1...a. Instead of estimating a regression model coupling x and y, we estimate one
regression model for each i = 1...a by ordinary least squares. For the i-th model, its single
regression coefficient b; is given by

b; :argiréilrllHu,-—bt,-Hz. 5)

For given loading vectors, this model can be used for prediction by (i) representing an input vector
X,+1 in terms of its input scores Hng1)is L= 1...a, (ii) using the b; regression coefficients of (5) to
compute the corresponding output scores u(, 1); = bit(,41);» i = 1 ... a, and (iii) approximating the
output signal from (2) with a zero residual vector g.

The PLS algorithm estimates simultaneously the loading vectors p;, (;, the corresponding score
representation of a set of data tuples (x,,y,), r =1 ...n, and the low-dimensional regression models
(5). To simplify notation, in- and ouput vectors are stacked in the following matrices:

X = (x...x,)7 (6)
Y = (yi--w). 7)

Based on this, the PLS regression algorithm of (Geladi & Kowalski, 1986) can be given in Algo-
rithm 1.

From an alternative approach, the PLS regression reduces problem dimensionality by enforcing
an OLS solution that is located in a low-dimensional subspace that is constructed along directions
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Algorithm 1 PLS regression

Notation: “+—” means a variable assignment from right to left.
1. Initialize:

(@ X;+X
(b) Y < Y.

2. Fori=1...a:

(a) Setu; to an arbitrary column of Y;.
(b) “X block™:
iow; — Xou;/ |ug]?
ii. w; < w;/||wi|
ii. t; <« X;w;
(c¢) “Y block™:
1. q; < Y,'t,'/ HtiHZ
ii. qi ¢+ q;/[lq
1ii. u; < Y,~q,~
(d) Update of loadings and scores:
1. pi+ X,'t,'/ Htl’Hz
1. ti<t; leH
iii. p; < pi[|pill
(e) Regression: b; = u’t;/[|t;||?
(f) Calculation of residuals:
i X1 =Xi—t;p]
ii. Yiyr =Y —bitiq]




of large variability in the explanatory variables (Frank & Friedman, 1993). Since the previous m
input variables are ’compressed’ into a new variables through PLS regression. It no longer requires
all of the m output variables should have a observed value in order to get a unique solution in the
optimization problem (instead, the number of observed output variables just needs to be no less
than a).

Capacity update

Denote the (again, mean-centered) real network flow observations as §' = (¥ j)’ . The updated (and
mean-centered) capacities X' are then obtained in two steps. First, the following optimization
problem is solved:

2
min Y | ;=) bisiqi; ®)
s=(s:) j=1 i=1

where g;; is the jth element in the loading vector ;. The solution s of this optimization problem
contain the scores on all the loading vectors p;, i = 1...a and s has a dimension of a. Next, the
corresponding main-centered capacity vector &’ is constructed according to

a
¥ =Y sipi ©)
i=1

Then the estimated capacity estimation X (without mean-centering) can be recovered. To avoid
oscillations, the currently best capacity estimate is updated by computing a convex combination
of the previous estimate and X, with the weight on X being specified further below.

Weight Settings

In capacity update step, a weight oy (where k is the current iteration number) on X needs to be set in
order to guarantee that the optimization point can be obtained and avoid oscillations. In generation
of trial points, there also exists a weight f;, which makes the range coefficient of variation 0
change after each iteration (i.e. 6 = &8, where & is the fixed initial variation coefficient). oy
and B needs to satisfy the following conditions (Spall, 1992):

>0, B>0, Vk (10)
o — 0, Br—0, ask — oo an
Y oy = oo (12)
k=1
Y (%)? < oo, (13)
kgl(ﬁk)

.. I S . .
Based on these conditions, oy = % and By = (%)é are set in this work. They remain unchanged in
all the following experiments. In other words, the final estimated capacities X in kth iteration is set
according to

1
R R+ (R—%,) (14)

where X, is the final estimated capacities in the previous iteration and “<-” means a variable
assignment from right to left.

3. RESULTS AND DISCUSSION

Experiment 1: Default parameter setting with a sampling strategy

Based on the method mentioned in the previous section, a sampling strategy is implemented which
aims at further improving the efficiency of calibration. We do not create a new set of simulator
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replications in every iteration but also recycle all replications from earlier iterations. In the first
iteration, 101 trial points are generated in the simulator and used in the PLS regression. From the
second iteration, only 11 replications are implemented and the newly generated trial points are
added to the complete pool of trial points from all the previous iterations. Correspondingly, in the
PLS regression from 2nd iteration, 101 trial points that are closest to the current capacity estimate
are used.

Then we formulate a basic experiment (Experiment 1) with parameter settings shown in 2:

Table 2: Default parameter values

parameter default value
initial variation coefficient & 0.1
generated trial point number in 1st iteration Ny 101
generated trial point number in k-th iteration (k # 1) N 11
number of trial points used in PLS regression N3 101
number of loading vector pairs a 20

In order to evaluate the performance of the method, a test network of Stockholm with 22547 links
is used. A synthetic real capacity vector is generated by randomly varying the given network
parameters. The MATSim network assignment package is used to compute network flows; for
simplicity the following experiments consider a fixed demand exogenously given route choice.

A real capacity vector X is randomly (but in a reasonable range) generated and the corresponding
network flows ¥ are simulated.

The performance of different configurations of the proposed method is evaluated in terms of the
square error between real flows ¥ and the estimated ones obtained from mapping estimated capac-
ities X in the simulator:

o = [T~ FR)]? (15)

where function f represents the map from capacities to flows in MATSim simulator. It should be
noted that in our simulation, both ¥ and the mapping function f lead to 2% of the real flows
and estimated flows, respectively in order to reduce the computation time. This setting does not
influence feasibility of the whole method but it should be kept in mind when reading the result
graphs.

An alternative approach is to evaluate the performance in terms of the square error between real
(yet to the calibration method unknown) capacities X and their estimated counterpart X:
2 < o2
€capacity — ”X - XH . (16)
We can also investigate the result in a more detailed way: Relationship between the relative cali-
bration error e; for a given link i and the congestion level of it cong; can be plotted for all the links.

Difference d; between initial relative error e;,; ; and e; can also be calculated to see if calibration
makes the estimated capacity value of link i move towards the right direction. The mathematical



expression of theses parameters are shown below:

5

cong; = Z 17)
1
e = ’x;x' (18)
1
ey = DOl (19)
X
di = e —epni, (20)

where subscript i represent link index and x;, ; is the initial guess of capacity value of link i.

One intuition is that calibration of those links which are relatively more congested should be more
precise. A variable of congestion level cong can be defined and the observed data is cong; for
each link i. Similarly, variables e and d can be defined with observations e; and d; for all links,
respectively. Then two singular linear regression models can be constructed to test the conjecture:

e = fcong+fo+e (21)
= [{ycong+ o+ € (22)

where € and €’ are error terms.
Figure 2 shows the capacity error €2, paciry and flow error e?-low versus iteration numbers, where the
error at iteration number O represents the error between initial guess and real values of capacities
and flows, respectively. From these graphs it can be seen that both errors goes down as iteration
number increases, which indicates our method works. Given that this simulation requires about
8 hours of computing time on a PC with a RAM of 16GB and a clock speed of 2400 GHz, we
observe that the method is computationally feasible.

In this work, a random seed is set in MATSim in determining the generation of input trial data
and it has been found that the flow error is always decreasing for different random seeds but the
capacity error does not always reduce. One reasonable explanation is that the randomness of trial
points in the input space leads to variation in capacity estimation, but different estimations map to
similar values in output space due the fact that the functional relationship between capacities and
flows are "many to one".
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Figure 2: Capacity error ¢

Figure 3 shows the relative error e (vertical axis) and calibration difference d (color mapping)
versus congestion level cong (horizontal axis), respectively. The congestion level is above 0.02
occasionally due to the numerical approximation, which does not influence the performance of the
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whole method. The estimation of 9; and fi; are shown in Table 3 and no conclusion can be drawn
that more congested links have better calibration results.
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Figure 3: Relative error ¢ and calibration difference d versus congestion level cong
in Experiment 1

Table 3: Estimation of #; and 1, in Experiment 1

| Standard deviation of i | 1, | Standard deviation of I,

Estimator | 7
-0.058 | 0.045

| 0.037 | 0.054

Experiment 2 and 3: Influence of different parameters

Based on Experiment 1, each of the following experiments aims at investigating the influence of

one specific parameter:

1. Experiment 2: Influence of initial variation coefficient & in trial points generation.

2. Experiment 3: Influence of number of loading vector pairs a in PLS regression.

Figure 4 shows the flow error e]%low versus iteration numbers in Experiment 2. From the graph,
09 = 0.15 has the best calibration result. It indicates that the ideal &, value should be neither too

large (approximation will be inaccurate) nor too small (noise influence will be great).

Figure 5 shows the flow error for different numbers of loading vector pairs (i.e. different a values)
used in PLS regression. An increased number of loading vector pairs indicates better result. But
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it should be noticed that the introduction of more loading vectors leads to increase of the running
time.

For Experiment 2 and 3 the estimation of y, is investigated for the best calibration case in each ex-
periment (&) = 0.15 for Experiment 2 and a = 50 for experiment 3). Table 4 shows the estimation
of u; for these cases. It can be observed that f1; has a relatively smaller (more negative) estimated
value and smaller deviation when compared with that from Experiment 1, which indicates that for
these cases, more congested links have a better calibration result.
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Table 4: Estimation of y; and u; in Experiment 2 (&) = 0.15) and 3 (a = 50)

Estimator | [ | Standard deviation of 1,
Experiment 2 (& = 0.15) | -0.087 0.048
Experiment 3 (@ = 50) | -0.097 0.059

4. CONCLUSIONS

In this work, we present a method for urban network road capacity calibration in which PLS
regression is introduced to achieve dimensionality reduction. By applying the method to a test
urban network - Stockholm network, we find that this method is feasible and efficient. Moreover,
it does not require other constraints in the optimization part (such as non-negativity).

It is a promising method since it can not only be used in capacity calibration but also other calibra-
tion problems (such as O-D calibration) which share a very similar structure. Even more generally,
it has the potential to be applied on most of high-dimensional inverse problems.

The presented results are preliminary and specific to one considered road network. Important
further investigations comprise the effect of incomplete network flow measurements, unfixed route
choices and other networks.

ACKNOWLEDGMENT

This research has been funded by the Swedish Transport Administration (TRV 2018/134731).

CONTRIBUTION STATEMENT

Guang Wei: Writing, design and coding of experiments and conceptual contributions;
Joakim Ekstrom: Text editing and supervision;
Gunnar Flotterdd: Supervision

REFERENCES

Antoniou, C., Azevedo, C. L., Lu, L., Pereira, F., & Ben-Akiva, M. (2015). W-spsa
in practice: Approximation of weight matrices and calibration of traffic simulation
models. Transportation Research Procedia, 7, 233-253. Retrieved from https://
www.sciencedirect.com/science/article/pii/S2352146515000812 (21st
International Symposium on Transportation and Traffic Theory Kobe, Japan, 5-7
August, 2015) doi: https://doi.org/10.1016/j.trpro.2015.06.013

Cascetta, E. (1984). Estimation of trip matrices from traffic counts and survey data:
A generalized least squares estimator. Transportation Research Part B: Method-
ological, 18(4), 289 - 299. Retrieved from http://www.sciencedirect.com/
science/article/pii/0191261584900122 doi: https://doi.org/10.1016/0191
-2615(84)90012-2

Frank, I. E., & Friedman, J. H. (1993). A statistical view of some chemometrics regression
tools. Technometrics, 35(2), 109-135. Retrieved from http://www. jstor.org/

11


https://www.sciencedirect.com/science/article/pii/S2352146515000812
https://www.sciencedirect.com/science/article/pii/S2352146515000812
http://www.sciencedirect.com/science/article/pii/0191261584900122
http://www.sciencedirect.com/science/article/pii/0191261584900122
http://www.jstor.org/stable/1269656
http://www.jstor.org/stable/1269656

stable/1269656

Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica
Chimica Acta, 185, 1 - 17. Retrieved from http://www.sciencedirect.com/
science/article/pii/0003267086800289 doi: https://doi.org/10.1016/0003
-2670(86)80028-9

Godoy, J. L., Vega, J. R., & Marchetti, J. L. (2014). Relationships between pca
and pls-regression. Chemometrics and Intelligent Laboratory Systems, 130, 182-
191. Retrieved from https://www.sciencedirect.com/science/article/
pii/S0169743913002189 doi: https://doi.org/10.1016/j.chemolab.2013.11.008

Helland, I. S. (1988). On the structure of partial least squares regression. Com-
munications in Statistics - Simulation and Computation, 17(2), 581-607. Re-
trieved from https://doi.org/10.1080/03610918808812681 doi: 10.1080/
03610918808812681

Lu, L., Xu, Y., Antoniou, C., & Ben-Akiva, M. (2015). An enhanced spsa algo-
rithm for the calibration of dynamic traffic assignment models. Transportation
Research Part C: Emerging Technologies, 51, 149 - 166. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0968090X14003295 doi:
https://doi.org/10.1016/].trc.2014.11.006

Spall, J. (1992). Multivariate stochastic approximation using a simultaneous perturbation
gradient approximation. /EEE Transactions on Automatic Control, 37(3), 332-341.
doi: 10.1109/9.119632

Tympakianaki, A., Koutsopoulos, H., & Jenelius, E. (2015, 02). c-spsa: Cluster-wise
simultaneous perturbation stochastic approximation algorithm and its application
to dynamic origin-destination matrix estimation. Transportation Research Part C
Emerging Technologies, 55. doi: 10.1016/j.trc.2015.01.016

12


http://www.jstor.org/stable/1269656
http://www.jstor.org/stable/1269656
http://www.jstor.org/stable/1269656
http://www.sciencedirect.com/science/article/pii/0003267086800289
http://www.sciencedirect.com/science/article/pii/0003267086800289
https://www.sciencedirect.com/science/article/pii/S0169743913002189
https://www.sciencedirect.com/science/article/pii/S0169743913002189
https://doi.org/10.1080/03610918808812681
http://www.sciencedirect.com/science/article/pii/S0968090X14003295
http://www.sciencedirect.com/science/article/pii/S0968090X14003295

	INTRODUCTION
	Research problem and potential issues
	Contribution

	METHODOLOGY
	Generation and evaluation of trial points
	Joint linear approximation and dimensionality reduction
	Capacity update
	Weight Settings

	RESULTS AND DISCUSSION
	Experiment 1: Default parameter setting with a sampling strategy
	Experiment 2 and 3: Influence of different parameters

	CONCLUSIONS
	REFERENCES

