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Mode choice latent class estimation on mobile network data

Abstract
In this paper we use a nested latent class logit specification to define and estimate a large-scale mode 
choice demand forecasting model. We estimate this model based on mobile phone network data 
translated to roughly 100 000 long-distance trips within Sweden, achieving convergence of the model 
and credible parameter estimates. We develop methods to address two problems stemming from the 
nature of this data: the difficulties of distinguishing bus trips from car trips (since they share the same 
infrastructure) and distinguishing business from private trips (since trip purpose is unknown). To 
address the first issue, we estimate a nested logit model with an artificial nest that accounts for the 
differences in utility between bus and car. To address the latter issue, we estimate a latent class model, 
identifying classes of trips interpreted as private and business trips. Addressing these two issues 
substantially improves model fit.

 
Keywords: Demand model, mode choice, latent class, mobile phone network data, travel 
behaviour, long-distance travel 

1 INTRODUCTION
Transport forecasting models are a cornerstone of transport appraisal. Accurate transport demand 
models supporting policy advice are urgently needed, given that the transportation sector, which 
contributes to roughly a third of all greenhouse gas (GHG) emissions in the EU, has increased 
emissions during the last decade, making it difficult to meet the EU’s share of the 2-degree target in 
the Paris agreement (European Environment Agency, 2021).  

In this paper we define and estimate a large-scale mode choice demand forecasting model for long-
distance passenger trips based on mobile phone network data. The raw mobile network data consist of 
signals to or from antennae that the phones have connected to. To build a data set that can be applied 
in our mode choice estimation, we first extract trips from the raw data, identifying origin, destination 
and mode. Then traffic supply data for all modes are matched to this trip data. 

Two key challenges in using this data in the mode choice model estimation arise from the nature of the 
resulting trip data. The first challenge is to distinguish bus trips from car trips. This cannot be 
determined with certainty in mobile network data because the identification of the choice outcome is 
based on the transportation infrastructure used, recognised from the antennae a phone has connected to 
during a trip. The second challenge is that information concerning trip purpose is not revealed by the 
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data. 

A better understanding of how to use mobile phone network data and address such problems in travel 
demand modelling, which is the main aim of this paper, is essential because the traditionally used 
national travel surveys (NTS) suffer from low and declining response rates (De Heer and De Leeuw, 
2002; Prelipcean et al., 2018). Hence, the surveys are becoming less representative of the full 
population over time. There is a risk that travellers with a high value of time are less likely to respond 
to the survey (Stopher and Greaves, 2007). If some modes are more prone to be underreported than 
others, this can greatly affect the resulting mode shares. Mobile phone network data has no 
nonresponse bias since it is collected passively, i.e. without active participation of the traveller. Janzen 
et al. (2018) note that in their French data, long-distance trips were underreported in their survey data 
compared to their mobile phone network data, which were about twice as frequent. In recent years 
GPS tracking surveys have been used to reduce response errors and retrieve more detailed route 
information. Unfortunately, GPS tracking surveys suffer from even lower response rates than 
traditional travel surveys (Indebetou and Börefelt, 2018).

A major advantage with mobile phone network data is that the operator can observe large numbers of 
trips at low cost.  However, since the phone owners do not give explicit permission to use the data, it 
is necessary to clean the data of any personal information before it can leave the operators’ servers 
(due to privacy laws such as GDPR). Moreover, links between trips made by the same phone owner 
are not allowed in the extracted data, since this could be used to identify the phone owner. Hence, 
identification of trips (including classification of main mode and a few other characteristics of the 
trips, such as time of day) from antennae signals was carried out on the operator’s servers. The data 
that could leave the operator’s servers was a random sample of such identified trips.

In this paper we estimate a mode choice forecasting model on such a data sample, including roughly 
100 000 long-distance domestic trips (trip length >100 km) in Sweden. We estimate a nested logit 
latent class mode choice specification on this data, addressing two key problems related to mobile 
phone network data: the difficulty of distinguishing bus from car trips (sharing the same infrastructure) 
and that trip purpose is unknown to the modeller.

The first challenge, distinguishing bus trips from car trips, stems from the fact that there is no 
geospatial difference between bus and car in the original antenna data since both modes use the road 
infrastructure1. We extracted the trip data used in the estimation of the mode choice demand model by 
applying the mode identification method referred to as the Route/Antenna method, described in Breyer 
et al. (2021). The Route/Antenna method was applied at the operators’ servers and could therefore use 
disaggregated data about antenna connections. In this method, the trip is classified as one of the modes 
rail, air, or road, based on antenna connections and infrastructure locations. In this paper, we address 
the first challenge by empirically evaluating three different methods of separating bus from car in the 
mode choice estimation model. 

The second challenge relates to the difficulty of identifying business trips from private trips, since the 
data lacks information about the trip purpose, as well as socio-economic information about the 
traveller. Not being able to identify business and private trips is a particular problem since it is widely 
acknowledged that the mode choice and the value of travel time differ between business and private 
trips. In this paper, we address the second challenge by proposing and empirically evaluating three 
different ways of incorporating indications of trip purpose derived from mobile network data into the 
model. The first two are based on a business trip indicator, and the third is a latent class model with 
two classes that we interpret as private and business trips.   

1 The mobile phone data also likely includes some observations from truck drivers on the roads. A crude 
calculation based on official vehicle kilometre statistics implies that the share of truck drivers among road-
travellers undertaking long-distance trips is around 5 percent. Unlike for bus, we have no supply data available 
for trucks and therefore have no possibility to separate truck observations from car observations.  
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Most research applying mobile phone network data in the analysis of passenger transport has so far 
focussed on the extraction of origin-destination-matrices (Alexander et al., 2015; Bekhor et al., 2013; 
Caceres et al., 2020, 2013; Calabrese et al., 2011; Gariazzo et al., 2019; Gundlegård et al., 2016; Iqbal 
et al., 2014; Tolouei et al., 2017; Toole et al., 2015). Dypvik Landmark et al. (2021) investigated the 
robustness and quality of mobile phone network data compared to other data sources and found that 
mobile phone network data is particularly useful for long-distance trips, due to the coarse spatial 
resolution. Mobile phone network data have been used on its own for route choice modelling 
(Bwambale et al., 2019b, 2019a), and  also in combination with survey data for route choice purposes 
(Bwambale et al., 2020). Furthermore, Bwambale et al. (2019c) combined mobile phone data with 
GPS data to model departure time choice. Ghasri et al. (2017) use mobile phone data to replicate trip 
patterns using a decision tree classifier. Two authors have combined mobile phone network data with 
survey data on the OD level to estimate travel demand models. Janzen (2019) estimated an activity- 
based model based on a synthetic population, while Brederode et al. (2019) used a multi-proportional 
gravity model to fuse mobile phone network data with survey data on the OD level before parameter 
estimation. Burgdorf et al., (2020) validated the behavioural output of an off-the-shelf mobile phone 
network data provider with the behavioural output from a gravity model based on survey data, and 
found that the mode split and travel frequencies were similar. Huang et al. (2019) reviewed studies 
classifying modes of trips identified in mobile phone network data. Out of the 22 studies found by 
Huang et al. (2019) only four studies separate bus trips from car trips, where Danafar et al. (2017), 
Kalatian and Shafahi (2016) and Phithakkitnukoon et al. (2017) mainly focus on short distance trips 
based either on proximity to route or travel speed, and Wang et al. (2010) only consider an example 
origin-destination pair (OD pair) where there is a clear difference in travel time between car and mass 
transit. Yang et al. (2022) confirm the difficulty of distinguishing bus and car trips based on geospatial 
information, even in the case of location-based services data (which derived from a combination of 
sensors such as Wi-Fi, Bluetooth, cellular tower, and GPS information whenever a mobile application 
updates the phone's location). In their study bus trips had the least prediction accuracy of all 
considered modes, probably due to the similarity between bus and car trips.

To our knowledge, no other authors have estimated country-wide large-scale mode choice models on 
mobile network data, which can be used for forecasting. We propose a model structure addressing the 
challenge of distinguishing road modes in mobile phone data, as well as a model structure addressing 
the challenge of lack of trip purpose in mobile phone data. While Andersson et al. (2022) define a 
mode choice model estimated on mobile network data and conduct a first test estimation of the model, 
that model included fewer variables and did not address the two challenges of this paper. Our main 
contribution in this paper is to increase the understanding of how to use mobile phone data to estimate 
large scale transport demand models. 

2 DATA 
2.1 Mobile phone network data

The mobile phone network data utilised in this paper is based on antenna connections in Sweden from 
one mobile operator during one week in 2018 (pre-pandemic). The data contains billing data and 
location updates extracted from the core network and includes periodic, location area (LA), routing 
area (RA), tracking area (TA), and cell updates following the terminology proposed by Gundlegård 
(2018). The data consists of 936 million connection events from 2.7 million users. 

To extract trips from the raw data (antenna connections), we process it in two steps, using a remote-
access setup (as in de Montjoye et al., (2018)). Since the phone owners did not give explicit 
permission to use the data, the code is brought to the raw data on the operator’s servers (due to privacy 
laws). The first step is to extract trips from antennae observations and assign each trip to a start zone 
and a destination zone. We use a stop-based trip extraction method as described in (Breyer et al., 
2021), where a stop is assumed when the user does not move more than two kilometres for more than 
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two hours. We apply the same zones as the Swedish long-distance transport model (owned by the 
Transport Administration). In total, there are 682 such zones in Sweden.

The second step is to classify each trip in the sample by travel mode. We classify the main mode of a 
trip as air if the trip contains two events that are within 10 km distance to an airport and where the 
distance between the two events is at least 200 kilometres and straight-line travel speed at least 200 
km/h. For the remaining trips, we use the geometric Route/Antenna mode classification method 
described in Breyer et al. (2021) to identify the main mode of each trip. The method identifies the 
mode of each trip by comparing the spatial distribution of antennae that are connected during the trip 
to the fastest car and rail routes (according to OpenTripPlanner (2020)) from the origin to the 
destination. See Breyer et al. (2021) for a more thorough description of the mode identification 
process. 

The resulting anonymised and mode-classified trips include no personal information and can be 
exported from the operator’s servers. Moreover, links between trips made by the same phone owner 
are not allowed in the data extracted from the operator’s servers, since this could be used to identify 
the phone owner. We select a random sample of 100 000 long-distance trips from this data, to estimate 
the mode choice demand model outside the operators’ servers. Long-distance trips are defined as trips 
with a distance of at least 100 kilometres between origin and destination zone centroids. The variables 
in this trip data are described in Table 1.

Table 1: Features in the mobile phone network data
Feature Values
Origin Origin zone of the trip 
Destination Destination zone of the trip
Peak hour (r) True if trip start is during peak hours (Mon-Fri at 7-9 or 15-18), false 

otherwise
Weekend (s) True if day is Saturday or Sunday, false otherwise
Business Departure Time True if departure time is between Monday 12 am and Friday 12 am, 

false otherwise
Employment True if the user that made the trip has a regular day activity (see 

Appendix A), false otherwise
Daytrip (d) True if the user has made a return trip the same day, false otherwise
Regular home/night location (h) True if the user that made the trip has a regular night-time location (see 

Appendix A), false otherwise
Identified mode ( )𝑚 Most likely main mode of the trip

There are some deficiencies in the dataset. First, there is a risk of errors in the mode identification 
performed using the methods in Breyer et al. (2021). One reason for this is the assumption that all road 
travellers use the fastest route (according to Open Trip Planner), while there are in fact several routes 
that are used for many origin-destination pairs in Sweden. The fastest route may also vary among 
departure times. For rail, the number of used routes for a given OD pair is rarely larger than one. 
Hence, there is a risk that some road trips (not using the fastest route) are identified as rail trips (but 
the reverse is less likely). A more thorough analysis of what type of situations are at higher risk of 
being misclassified can be found in Andersson et al. (2022). Validation on a smaller dataset between 
Norrköping and Linköping revealed that the Route/Antenna method had an accuracy of 95.5%. That 
is, when using 510 trips with manually annotated modes of transport, 95.5% of the observations had a 
match between the most probable mode from the Route/Antenna method and the annotated mode 
(Breyer et al., 2021). However, for the particular origin-destination pair Norrköping-Linköping it is 
uncommon to use another route than the fastest (straight on the motorway E4 connecting the two 
cities).

Second, data includes no trip purposes. Instead, we construct a business trip indicator  from an 𝐵
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indicator of whether the traveller is employed (“Employment”2 in Table 1) combined with an indicator 
of whether the trip started during business hours (“Business Departure Time” in Table 1). If the trip is 
performed by a traveller who is labelled as employed, and the long-distance trip started during 
business time, we take the business trip indicator B to be one, and zero otherwise. 

2.2 Supply data

Transport supply data for the chosen and unchosen modes is also needed to estimate the model. Such 
data were provided by the Swedish Transport Administration. The Administration obtained this supply 
data by simulating travel time and cost matrices for all pairs of origin and destination zones using the 
Swedish long-distance transport model, using Emme43 for network assignment. The costs are at the 
price level of 2017, and we adjusted them to 2018 prices (which is the year the mobile phone network 
data were collected).

For public transport trips, the supply data includes a dummy variable for availability4 (a), ticket price 
(c), in-vehicle travel time (t), half headway of main mode (w), and number of boardings by OD pair 
(n). The data also contains the sum of the road distance between the centroid of the start zone and 
closest mode terminal (airport, train station or bus terminal), and the distance between the centroid of 
the destination zone and closest mode terminal (δ). As the mode and price of the connecting trip is 
unknown, this sum of distances is included as a representation of the travel time and travel cost of the 
connecting trips. 

For car trips, the supply data includes travel time (t) and travel distance by OD pair. It is well known 
that the marginal cost of car travel is subject to great variation between trips and vehicles 
(Kristoffersson et al., 2020), due to variation in energy efficiency, fuel type, driving style, traffic 
environment, and the type of car access (car ownership, private leasing or company car influence the 
marginal cost of car use, both through prices and taxes, and depreciation). We therefore approximate 
the marginal cost of car use. The Swedish tax authority allows the employer to reimburse employees 
using their private car for a business trip by maximum 1.85 SEK/km.5 Roughly half of this amount 
accounts for fuel costs, whilst the rest covers depreciation which depends largely on the car. The 
average occupancy for private long-distance car trips is just over two persons per car (2.22) 
(Trafikverket, 2020), while we assume that it is just one person for business trips. We therefore 
approximate a car distance cost of 1.85/2 0.9 SEK/km for private trips and 1.85 SEK/km for ≈
business trips.6 

There are probably some substantial measurement errors in the supply data. Varela et al. (2018) show 
that the measurement error in the travel cost is larger than the measurement error in the travel time, not 
only for car trips. For air and rail trips, there are large variation in ticket prices depending on the 
traveller (discounts for children and retirees are common), the timing of the trip (departure time and 
day) and how long in advance the ticked is booked. Such variation likely causes a larger attenuation 
bias in the cost parameter than in the time parameter, implying that the value of time calculated from 
the estimated time and cost parameters would be overstated. 

2 The employment indicator is constructed based on trips made by the same traveller in one week, including also 
regional trips (see Appendix A).
3 https://www.inrosoftware.com/en/products/emme/
4 A mode is set to unavailable if the origin and destination zones share the same closest terminal (airport, train 
station or bus terminal) of that mode.
5 Inkomstskattelagen (income tax law) 12 kap. 5 §, 2007.
6 10 SEK is approximately €1.
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2.3 Descriptive statistics 

As shown in Table 3, 26% of travellers in the dataset are identified as employed, and 55% of trips are 
performed during business time according to the definition in Table 1. This leads to 13% of trips being 
labelled as business trips. Moreover, 26% of trips are day trips (meaning the return trip is performed 
the same day), 79% of travellers are identified as having a regular night location (“Regular home/night 
location”, in Table 1). Finally, 23% of the trips started during peak hours (as defined in Table 1), and 
34% of trips started during the weekend.

Of the long-distance trips in the sample, 1.6% are classified as air trips, 32.2% as rail trips, and 59.9% 
as road trips. The remaining 6.3% could not be classified by the Route/Antenna method as no 
appropriate routes have been found. These trips are likely to be road trips not using the fastest route 
(see Section 2.1). These non-classified trips are excluded from the estimation described in Section 3.

Next, we compare these mode shares to the Swedish national travel survey (NTS). The most recent 
NTS was conducted in  2020 and 2019 (Trafikanalys, 2021a). However, in this survey respondents 
were only asked to report trips that they made during one pre-determined survey day. Since long- 
distance trips are rare, there are few observations of long-distance trips in this data, making statistical 
analysis unreliable.  

In previous surveys, conducted 2005-2006 and 2011-2016, respondents were asked to report any long-
distance trips performed during the past few months7, which provided more observations of such trips. 
In the survey conducted 2011-2016, the reported domestic long-distance mode shares are 15.2% air, 
14.3% rail, 67.5% road (car + bus), and 3% other (see Table 2). The 15.2% share of air trips is 
substantially larger than the corresponding share of 2% in the data extracted from mobile network 
data. However, the surveys conducted 2011-2016 have low response rates with an average of 41% 
(Holmström, 2017; Holmström and Wiklund, 2015), as well as a higher response rate among older 
respondents. A major reason for this is that respondents were recruited by telephone and that many 
households (in particular older) at that time still had a landline telephone connection or a registered 
telephone number (which is no longer the case). However, younger households had fewer landline 
phones, and were thus more difficult to recruit. As many as 48 percent of the respondents (a random 
sample of the population) could not be reached, because the survey firm had no telephone number for 
them, or the respondent did not pick up the phone. In the preceding 2005-2006 NTS, only 12 percent 
of the respondents could not be reached: most households still had a landline phone at that time 
(Trafikanalys, 2018). For this reason, the 2005-2006 is probably more reliable and representative of 
the full population than the subsequent NTS data, and therefore we compare the modal splits in our 
mobile phone network data with the mode shares of the 2005-2006 NTS data. 

To make the 2005-2006 NTS data as representative of 2018 as possible (the year of mobile phone 
network data collection), we adjust the resulting modal split according to the change in aggregate 
numbers of trips by mode in Sweden. We use national statistics on the change in the number of long-
distance rail trips (Trafikanalys, 2011, 2018a)  and domestic air trips (Trafikanalys, 2021b). For car 
trips we only had access to changes in the total number of vehicle kilometres driven (Trafikanalys, 
2018b), but no data on changes in long-distance car travel in particular. We still used this data as a 
rough approximation of the change in the number of long-distance car trips.   

Table 2 depicts the resulting mode shares for the various data sources. The mobile phone network data 
is in line with the more reliable survey data from 2005-2006, adjusted to 2018 as described above. 
However, the table indicates that the share of air trips is overstated in the 2011-2016 NTS data, 
confirming the suspicion that the low and biased response rate has implied that the trips in the 2011-

7 In the 2011-2016 survey, respondents reported trips longer than 100 km during the past month and trips longer 
than 300 km during the last three months, and in the 2005-2006 survey respondents reported trips longer than 
100 km during the last two months.
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2016 data are not representative of the full population.

Table 2: Domestic Swedish mode shares from mobile phone network data, national travel survey data 2005-
2006, national travel survey data 2011-2016 and 2005-2006 adjusted to 2018.  

Rail Air Road 
(car/bus)

Other/unclassified

Mobile phone data 2018 32% 2% 60% 6%

NTS 2005-2006 12% 4% 82% 2%

NTS 2011-2016 14% 15% 68% 3%

NTS 2005-2006 adjusted to 2018 15% 4% 79% 2%

The greatest difference between the mobile phone network data and the adjusted 2005-2006 NTS data 
is that the share of rail trips is considerably larger in the former. A possible explanation is that some of 
the car trips were incorrectly classified as rail trips by the Route/Antenna method used to identify the 
mode of each trip in the mobile phone network data. As discussed previously, this is likely to happen 
for OD pairs where car trips do not always take the fastest route (or when the fastest route may vary 
between departure times). Another possible reason is that rail trips are underreported in the 2005-2006 
NTS data due to fatigue or forgetfulness. This is still not likely, since car trips, rather than rail trips, 
tend to be underreported in NTS data for this reason (WSP Analysis and Strategy, 2012). 

Availability rates for rail, bus, air and car for the observed trips are 99.6%, 98.3%, 77.0% and 100% 
respectively (meaning the average availability of modes for each of the four modelled modes for all 
observed OD pairs). Supply statistics for all alternative travel modes coded for all observed trips, as 
well as the trip specific information from the mobile phone network data for all observed trips are 
presented in Table 3.

Table 3: Statistics of model variables.
Variable: Minimum: Maximum: Mean: Median: Standard 

deviation:
Business departure time [t/f] 0.0 1.0 0.55 1.0 0.5
Daytrip [t/f] 0.0 1.0 0.26 0.0 0.44
Regular home/night location [t/f] 0.0 1.0 0.79 1.0 0.41
Employed [t/f] 0.0 1.0 0.26 0.0 0.44
Car travel time [min] 56.4 1136 185 152 102
Car cost private [SEK] 90.1 1686 265 214 152
Car cost business [SEK] 185 3465 544 440 311
Bus travel time [min] 35.0 1790 324 277 170
Bus number of boardings 1.0 7.9 2.89 3.0 1.19
Bus first wait time [min] 2.55 480 76.7 53.3 82.7
Bus travel price [SEK] 74.3 1059 196 162 102
Air travel time [min] 21.6 302 118 129 42.8
Distance to airport [km] 6.23 383 92.9 81.6 47.9
Air first wait time [min] 12.6 480 69.5 48.0 68.4
Air number of boardings 1.0 3.0 1.69 2.0 0.54
Air travel price [SEK] 417 4582 2035 2097 890
Rail travel time private [min] 11.1 1317 192 170 109
Distance to train station private 0.34 503 22.1 12.8 28.3
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[km] 
Rail first wait time private [min] 2.82 240 35.4 28.3 28.2
Rail number of boardings private 1.0 5.48 1.95 2.0 0.77
Rail travel price [SEK] 5.7 2017 749 666 364
Rail travel time business [min] 11.1 1200 190 169 105
Distance to train station business 
[km] 

0.34 503 22.0 12.7 28.3

Rail first wait time business [min] 2.82 240 32.6 28.2 23.9
Rail number of boardings business 1.0 6.32 2.07 2.0 0.84
Business dummy 0 1 0.13 0.0 0.34
Weekday peak hour 0 1 0.25 0.0 0.43
Weekday off-peak 0 1 0.46 0.0 0.50
Weekend 0 1 0.29 0.0 0.45

3 MODEL SPECIFICATIONS 
In this section we specify a series of logit model specifications. We apply maximum likelihood (MLE) 
(Edwards, 1972) in the estimation. A short summary of all specifications can be found in Appendix C.

3.1 Modelling the road modes

Since the modes bus and car are not distinguished in the data, we formulate three different model 
specifications I-III, modelling the bus and car alternatives in different ways, described below.

3.1.1 Joint utility function for road choice
Specification I is a multinomial logit (MNL) model, in which car and bus are modelled as one and the 
same mode. The utility function for this combined road mode is a weighted average of the utility 
functions for bus and car, where the weights equal the mode shares for long-distance bus ( ) and car 𝜋
trips (  in Sweden1 ‒ 𝜋)

𝑉𝑟𝑜𝑎𝑑
= 𝐴𝑆𝐶𝑟𝑜𝑎𝑑 + 𝛽𝑡_𝑟𝑜𝑎𝑑(𝑡𝑐𝑎𝑟(1 ‒ 𝜋) + 𝑡𝑏𝑢𝑠𝜋) + 𝛽𝑐(𝑐𝑐𝑎𝑟(1 ‒ 𝜋) + 𝑐𝑏𝑢𝑠𝜋) + 𝛽𝑎𝑎 +  𝑎(𝛽𝑛𝑛 + 𝛽𝑤

log (𝑤𝑏𝑢𝑠)) + 𝛽𝑠𝑠 +  𝛽𝑟𝑟, 
(1)

where  denotes travel time (in-vehicle time only),  denotes travel cost,  is a dummy taking the value 𝑡 𝑐 𝑎
1 if there is a scheduled bus connection available between origin and destination zones and 0 
otherwise,  is set to 1 if the trip starts during a weekend, 0 otherwise. The dummy variable takes the 𝑠 𝑟 
value 1 if the trip starts during peak hours, 0 otherwise,  is the number of boardings during the bus 𝑛
trip and the waiting time  is taken to be half the headway of the main mode. The alternative specific 𝑤
constant  has been fixed to 0. The share  is observed in the national travel survey from 2011-𝐴𝑆𝐶𝑟𝑜𝑎𝑑 𝜋
2016 (implying .  𝜋 = 6%)

For air trips, the utility function is specified as

𝑉𝑎𝑖𝑟 = 𝐴𝑆𝐶𝑎𝑖𝑟 + β𝑡_𝑎𝑖𝑟𝑡𝑎𝑖𝑟 + 𝛽𝑐𝑐𝑎𝑖𝑟 + 𝛽𝛿_𝑎𝑖𝑟𝛿𝑎𝑖𝑟 + 𝛽𝑛𝑛𝑎𝑖𝑟 + 𝛽𝑤log(𝑤𝑎𝑖𝑟), (2)

where  is the alternative specific constant of air,  denotes the in-vehicle travel time for air, 𝐴𝑆𝐶𝑎𝑖𝑟 𝑡𝑎𝑖𝑟
 is the ticket price of the air trip,  is the distance between the zone centroid and the closest 𝑐𝑎𝑖𝑟 𝛿𝑎𝑖𝑟

airport (representing access and egress trips),  is the number of boardings needed for the air trip 𝑛𝑎𝑖𝑟
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and  is taken to be half the headway of the main mode.𝑤𝑎𝑖𝑟

For rail trips, the utility function is defined as

𝑉𝑟𝑎𝑖𝑙 = 𝐴𝑆𝐶𝑟𝑎𝑖𝑙 + 𝛽𝑡_𝑟𝑎𝑖𝑙𝑡𝑟𝑎𝑖𝑙 + 𝛽𝑐𝑐𝑟𝑎𝑖𝑙 + 𝛽𝛿_𝑟𝑎𝑖𝑙𝛿𝑟𝑎𝑖𝑙 + 𝛽𝑛𝑛𝑟𝑎𝑖𝑙 + 𝛽𝑤log(𝑤𝑟𝑎𝑖𝑙), (3)

where  is the alternative specific constant of rail,  denotes the in-vehicle travel time for rail, 𝐴𝑆𝐶𝑟𝑎𝑖𝑙 𝑡𝑟𝑎𝑖𝑙
 is the ticket price of the rail trip,  is the distance between the zone centroid and the closest 𝑐𝑟𝑎𝑖𝑙 𝛿𝑟𝑎𝑖𝑙

train station (representing access and egress trips),  is the number of boardings needed for the rail 𝑛𝑟𝑎𝑖𝑙
trip and  is half headway of the main mode. 𝑤𝑟𝑎𝑖𝑙

3.1.2 Random assignment to bus or car

Specification II is identical to specification I, except that the two road modes bus and car are specified 
as separate alternatives. All road trips in OD pairs without any bus connection are assumed to have 
been made by car. All other road trips are then randomly assigned either to bus or car, such that the 
share of bus and car trips among all OD pairs equals the mode shares  and , respectively.  This 𝜋 1 ‒ 𝜋
specification is similar to the approach proposed by Beser Hugosson (2003). 

The utility function for car is given by

𝑉𝑐𝑎𝑟 = 𝛽𝑡_𝑐𝑎𝑟𝑡𝑐𝑎𝑟 + 𝛽𝑐𝑐𝑐𝑎𝑟 + 𝛽𝑠𝑠 +  𝛽𝑟𝑟. (4)

The utility function for bus is given by

𝑉𝑏𝑢𝑠 = 𝐴𝑆𝐶𝑏𝑢𝑠 + 𝛽𝑡_𝑏𝑢𝑠𝑡𝑏𝑢𝑠 + 𝛽𝑐𝑐𝑏𝑢𝑠 + 𝛽𝑛𝑛𝑏𝑢𝑠 + 𝛽𝑤log(𝑤𝑏𝑢𝑠). (5)

3.1.3 Composite utility

Specification III is identical to specification II, except that the bus and car alternatives are assumed to 
belong to a separate nest, i.e., specification III is a nested logit model. This implementation of the bus 
and car alternative in a joint nest resembles the approach used in Daly et al. (2002). Here, the 
probability of choosing mode i {car, bus} within the road nest is given by∈

𝑝𝑟𝑜𝑎𝑑,𝑖 = 𝑃𝑟(𝑟𝑜𝑎𝑑)𝑃𝑟(𝑖│𝑟𝑜𝑎𝑑) =
exp𝑉 ∗

𝑟𝑜𝑎𝑑

∑
𝑘

exp 𝑉 ∗
𝑘

exp 𝑉𝑖

∑
𝑗

exp 𝑉𝑗
(6)

where , and  is the utility for mode j {car, bus} given by Equations (4) 𝑉 ∗
𝑟𝑜𝑎𝑑 = 𝜃log∑

𝑗exp (𝑉𝑗/𝜃) 𝑉𝑗 ∈
and (5) ( is set to  when there is no available bus connection), and k {road, rail, air}. The 𝑉𝑏𝑢𝑠 ‒ ∞ ∈
parameter,  is a structural coefficient determining the scale of choices at the car/bus-level 0 < 𝜃 ≤ 1
compared to choices at the road nest level.  is estimated along with the other parameters but restricted 𝜃
to the bounds . The log-sum  is the maximum expected utility and can be interpreted as 0 < 𝜃 ≤ 1 𝑉 ∗

𝑟𝑜𝑎𝑑
a composite utility function for car and bus, where the balance between the modes depends on the 
generalised costs of the modes. This specification makes it possible to connect the choice to one of the 
three utilities ,  or , while still estimating parameters for the four modes car, bus, air, and 𝑉𝑟𝑜𝑎𝑑 𝑉𝑎𝑖𝑟 𝑉𝑟𝑎𝑖𝑙
rail. 

Since none of the specifications I-III are nested versions of each other, the likelihood ratio test cannot 
be used to compare the relative performance of the specifications. Instead, we use the Akaike 
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information criterion (AIC). The AIC measure rewards goodness of fit and gives a penalty for the 
number of parameters in the model. The penalty indirectly discourages overfitting, as a high number 
of explanatory variables increases the risk of overfitting. The AIC is calculated as

𝐴𝐼𝐶 = 2𝑘 ‒ 2𝐿𝐿 (7)

where k is the number of estimated parameters and  is the log likelihood.𝐿𝐿

It is not fair to directly compare the AIC of specification II with specifications I or III since the LL of 
specification II is calculated based on four alternatives (as the road alternative is randomly assigned to 
either bus or car before estimation). This contrasts to specifications I and III in which the LL is 
calculated based on the three original alternatives in the choice set. To compensate for this one could 
add an additional likelihood for specifications I and III, representing the choice for road travellers 
between car and bus, calculated as

 𝑙𝑟𝑜𝑎𝑑,𝑎(𝑝𝑏𝑢𝑠|𝑟𝑜𝑎𝑑log(𝑝𝑏𝑢𝑠|𝑟𝑜𝑎𝑑) + 𝑝𝑐𝑎𝑟|𝑟𝑜𝑎𝑑log(𝑝𝑐𝑎𝑟|𝑟𝑜𝑎𝑑)), (8)

where  is the number of trips labelled as road where both bus and car are available options, 𝑙𝑟𝑜𝑎𝑑,𝑎
 is the share of bus trips among the road trips and  is the share of car trips among the 𝑝𝑏𝑢𝑠|𝑟𝑜𝑎𝑑 𝑝𝑐𝑎𝑟|𝑟𝑜𝑎𝑑

road trips (see Appendix B for details of the derivation of this expression). The expression in Equation 
(8) would then reflect the additional burden of making a random assignment to either bus or car for all 
the choices in which road was chosen and both bus and car are available. 

3.2 Trip purpose

Specification III will prove to be superior to specifications I and II (see Section 4). For that reason, 
subsequent specifications IV-VII implementing trip purpose in different ways will incorporate the 
implementation of the two road modes as in specification III.
 
Specifications IV-VI use the business trip indicator  in different ways, where specification VI is a 𝐵
latent class model (Hess, 2014). In specification VII, which is also a latent class model, we use more 
variables to indicate whether a trip is a business trip. 

3.2.1 Business trip indicator specifications

In specification IV, the business trip indicator  is simply added as a dummy variable in the utility 𝐵
function for car (Equation (4)). Specification V is segmented based on the business trip indicator, i.e., 
different models are estimated for trips identified as business (B=1) and private (B=0). For the 
business trips, the weekend variable in the utility function for car (Equation (4)) is removed since by 
definition no business trips start during the weekends (see Section 2). Moreover, the bus alternative is 
discarded from the model for business trips; according to the NTS data, very few long-distance 
business travellers use bus.

3.2.2 Two latent class specifications

In specifications VI and VII we use the data indicating the trip purpose (business trip or private trip) 
but take into account that it is not fully observed. We assume that the trips can be classified into the 
two latent classes: business trips and private trips. The two unconditional class probabilities,  and 𝑞𝑝 𝑞𝑏
, where the subscript p denotes private and b denotes business, are determined by the multinomial logit 
specification. The probability that the trip is private is .𝑞𝑝 = 1 ‒ 𝑞𝑏

The conditional probability that mode  is observed for a trip, given the parameter vectors , is  𝑚 𝛽

𝑃(𝑚|𝛽) = 𝑞𝑝𝑃𝑝(𝑚|𝛽𝑝) + 𝑞𝑏𝑃𝑏(𝑚|𝛽𝑏) (9)
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 and  represent the probability that mode m is chosen conditional on the trip 𝑃𝑝(𝑚|𝛽𝑝) 𝑃𝑏(𝑚|𝛽𝑏)
purpose parameters for business and private, respectively. The utility functions by mode for business 
and private trips include a similar set of variables, but different parameters  and  are estimated. 𝛽𝑝 𝛽𝑏
The bus mode is omitted from the business model.

In model specification VI the probability that a trip’s purpose is business is only indicated by the 
business trip indicator and is given by 

  𝑞𝑏 =
1

1 + 𝑒
‒ (𝛾 + 𝐵 𝛾𝐵)

where  is the business trip indicator,  and  are parameters to be estimated. Specification VI 𝐵 𝛾 𝛾𝐵
collapses to specification V if  and  and thus can be seen as a generalised version of 𝛾 =‒ 0.5𝛾𝐵 𝛾𝐵→∞
specification V, which means that the likelihood ratio test can be used to compare the specifications. 

Our final specification VII models the class probabilities in a more refined way, namely 𝑞𝑏 =

 where  ,   and  are parameters to be estimated (relating to a constant, the day trip 
1

1 + 𝑒
‒ (𝛾 + 𝑑𝛾𝑑 + ℎ𝛾ℎ) 𝛾 𝛾𝑑 𝛾ℎ

and regular home/night location variables respectively defined in Table 1). Specification V or 
specification VI is not a restricted version of specification VII, so we cannot compare these 
specifications using the likelihood ratio test. Instead, we use the AIC value as an indicator of the 
preferred specification. 

The utility functions of specification VII are similar to those of specification VI, but in specification 
VII the parameters for the number of transfers for private trips, private air in-vehicle time and private 
distance to airport have been excluded due to insignificance (air travel time was found to correlate 
with the alternative specific constant in the private component of specification VI). 

4 RESULTS 
This section presents the estimation results. All estimations were performed using Biogeme version 
3.2.5 (Bierlaire, 2020). The chosen optimisation algorithm was the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm.

4.1 Identifying the road mode

The estimation results for the three specifications I-III, differing in the way that the two road modes 
are specified, are shown in Table 4. As explained in Section 2, we cannot link trips made by the same 
traveller, and are thus not able to consider correlation between repeated observations. For this reason, 
we report the robust t-values given by Biogeme (Bierlaire, 2020), allowing for some specification 
error, including a possible violation of the assumption that the observations are independent. 

In the nested specification III,  reaches its upper boundary 1, implying that the nested multinominal 𝜃
model collapses to an MNL. This indicates that the modes within the road nest are not more similar to 
each other than to the modes. Specification III still differs from the other two models.

From the AIC test presented in Table 4, we conclude that specification III has the lowest AIC value of 
the three and thus is the preferred specification. Hence, the composite utility using a road nest fits the 
data best, and is thus the preferred method to apply to mobile network data, in which bus and car 
cannot be distinguished. 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4246865

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



12

Table 4: Estimation results for handling the road mode. 
*Structural coefficient  restricted to its maximum 1 to maintain consistency with intuitive response  𝜃
characteristics. 

Specification I Specification II Specification III

Name Parameter 
value

Robust 
t-test

Parameter 
value 

Robust t-
test 

Parameter 
value

Robust t-
test  

𝐴𝑆𝐶𝑏𝑢𝑠   -2.39 -37.5 4.04 9.43
𝐴𝑆𝐶𝑎𝑖𝑟 -1.04 -8.23 -0.75 -6.44 -0.817 -6.66
𝐴𝑆𝐶𝑟𝑎𝑖𝑙 -0.0891 -1.44 0.15 3.74 0.344 7.71
𝛽𝑎 0.505 7.9   
𝛽𝑐 -0.00065 -14.2 -0.00062 -14.1 -0.000584 -13.7
𝛽𝛿_𝑎𝑖𝑟 -0.0197 -24.2 -0.0194 -24 -0.0192 -23.8
𝛽𝛿_𝑟𝑎𝑖𝑙 -0.0171 -47.7 -0.0157 -45.5 -0.0158 -44.9
𝛽𝑤 -0.0186 -2.75 -0.128 -13.8 -0.14 -13.3
𝛽𝑛 -0.0711 -10.6 -0.165 -15.4 -0.26 -21.6
𝛽𝑟 -0.231 -13.3 -0.219 -12.7 -0.23 -12.7
𝛽𝑡_𝑏𝑢𝑠 -0.00401 -28 -0.0361 -10.3
𝛽𝑡_𝑐𝑎𝑟 -0.00764 -58.8 -0.00771 -54.2
𝛽𝑡_𝑎𝑖𝑟 -0.0169 -15.8 -0.0143 -14.4 -0.0123 -12.9
𝛽𝑡_𝑟𝑜𝑎𝑑 -0.00794 -60.3   
𝛽𝑡_𝑟𝑎𝑖𝑙 -0.00634 -45.3 -0.00527 -37.9 -0.00514 -34.3
𝛽𝑠 0.37 21.4 0.349 20.5 0.377 20.8
𝜃     1 *

# parameters: 13 14 15

Log likelihood: -60788.43 -70199.6 -60485.61
 

LL adjustment: -9440.78 0 -9440.78

Adjusted LL: -70229.21 -70199.6 -69926.39

AIC: 140484.4 140427.2 139880.8
 

Number of 
observations: 92011 92011 92011

4.2 Trip purpose

In the previous section specification III proved to be superior to specifications I and II.  For that 
reason, subsequent specifications IV-VII incorporate the implementation of the two road modes as in 
specification III.
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4.2.1 Business trip indicator

The estimated parameters for specification IV, the unsegmented model including the business trip 
indicator , are shown in the first column of Table 5. In this case, the business trip indicator proved 𝛽𝐵
to be insignificant. In the subsequent columns, separate models are instead estimated for private and 
business trips in specification V.

To compare the segmented specification V with the unsegmented specification IV, a likelihood ratio 2 χ
test is applied. The likelihood-ratio test statistic

=148.588,λLR = 2(LL𝑉_𝑝 + 𝐿𝐿𝑉_𝑏) ‒ 2𝐿𝐿𝐼𝑉

is 2-distributed. The segmented specification V has 25 degrees of freedom, and the unsegmented 𝜒
specification IV has 15 degrees of freedom. The value of the 2-distribution for 10 degrees of freedom 𝜒
and 0.001% significance level is 29.588. Hence the null hypothesis is rejected and the segmented 
model specification V is preferred.

4.2.2 Latent class model results

The latent class specification VI is presented in subsequent columns of Table 5. As mentioned in 
Section 3.2.2, we can use the likelihood-ratio test to compare specifications V and VI with the 
statistics  

= 1367.272.λLR = 2𝐿𝐿𝑉𝐼 ‒ 2(𝐿𝐿𝑉_𝑝 + 𝐿𝐿𝑉_𝑏) 

The segmented specification V has 25 degrees of freedom, and the latent class specification VI has 27 
degrees of freedom. The value of the 2-distribution for 2 degrees of freedom and 0.001% significance 𝜒
level is 13.816. Hence the null hypothesis is rejected, and the latent class model specification VI is the 
preferred specification. 

The two parameters that turned out to be useful in separating the classes private and business were  𝛾𝑑
(daytrip) and  (regular home/night location). It is in line with expectations that the long-distance trip 𝛾ℎ
being a daytrip increases the probability that it is a business trip. Furthermore, there are groups of 
individuals that are less likely to have a regular home location during the nights (identified by the 
regular home/night location variable, see Appendix A). These groups include professions like police, 
security guards, nurses who travel at night (like ambulance nurses, or nurses taking care of sick elderly 
people in their homes), taxi or public transport drivers, as well as young adults spending the night out. 
As none of these groups are expected to make long-distance business trips very often, it is in line with 
expectations that the parameter  is positive in explaining the probability of belonging to the business 𝛾ℎ
class.  

The mean value of the business class probability  is 11%, which is close to the share of business 𝑞𝑏
trips from the 2011-2016 NTS of 12%. One could also consider investigating posterior class 
probabilities, which take information into account about each traveller to improve the probability of 
belonging to a certain class (for example, a traveller that has chosen to travel by air is more likely to be 
a business traveller) (Hess, 2014). However, in our dataset, very little is known about each traveller 
and even if the same person has made several of the long-distance trips this is not visible in the data. 
For this reason, posterior class probabilities are not used here.
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Table 5: Estimation results for evaluation of segmentation by trip purpose indicator. The structural coefficient  𝜃
has been fixed to 1 in the estimations below. Presented t-values are the robust version of t-values. * Shared 
parameter between business and private.
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The estimation result of the refined latent class specification VII is presented in the final column of 
Table 5. The AIC is lower for specification VII than for specification VI, and specification VII is thus 
the preferred specification. 

The resulting values of travel time (VTT) for the preferred specification VII are presented in Table 6. 
As expected, the values of travel time are higher for business trips than for private trips. The VTT of 
business travel time are on the high side, but in line with the values of time derived from the current 
Swedish long-distance model. A standard assumption for business VTT is wage rate. A likely 
explanation is that within the range of domestic business trips, travel cost has a limited impact on the 
mode choice of long-distance business trips in Sweden. Travel time and scheduling constraints are 
likely much more important. 

For private trips, the parameter for in-vehicle time was left out of the utility function for air trips since 
it was not significant. One reason could be that the travel time varies so little among domestic air trips. 
Another reason is that there are so few private air trips. This means that it is not possible to calculate 
the VTT for private air trips.  

For private trips, bus has the highest VTT. A likely reason is that this is the most uncomfortable mode, 
with limited or no access to bathrooms and restaurants on board. However, VTT for bus may also not 
be credible for two reasons. First, the choice of long-distance domestic bus trips has been noted to be 
strongly influenced by party size in Swedish national travel surveys. As information about party size is 
of course not available in the mobile phone data, it was not possible to include it in the bus utility 
function. Second, a significant share of long-distance bus trips is sports teams or other organisations 
privately hiring a bus. For those trips, the generalized travel costs (including headway and fares) for 
scheduled buses that we apply are not representative. 

Among business trips, air trips have the highest value of time, followed by rail trips and finally car 
trips. A higher VTT for rail than for car trips is not expected and indicates that travellers are not more 
productive (able to work more) on rail trips than while driving. Another explanation for this could be 
scheduling constraints, i.e., there may be a mismatch between scheduled meetings and available rail 
departures, especially for appointments early in the morning. 

Table 6: Values of travel time for different modes for the best-found model specification. The average currency 
exchange rate at the year of data collection was 1€ = 10SEK.   

 Value of travel time, 
private trips [€/h]

Value of travel time, 
business trips [€/h]

Air - 465.0

Rail 6.1 659.4 

Car 35.3 529.3

Bus  113.1  -

5 CONCLUSION 
In this paper we show that mobile phone network data can be used for estimation of both state-of-
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practice and advanced transportation mode choice models. We also show how to address two of the 
main challenges related to mobile phone network data. The first challenge is that bus trips and car trips 
are difficult to distinguish in mobile phone data since the mode identification is based on the proximity 
between network antennae and road infrastructure. We show that modes can successfully be 
distinguished for the purpose of forecasting models, by implementing a nested logit structure. The 
second challenge is that the trip purpose is unknown. We address this by identifying two groups of 
travellers with markedly different preferences in terms of the valuation of travel time, by estimating a 
latent class structure. These classes are interpreted as private and business travellers.

One weakness of mobile phone network data is the absence of socio-economic information about the 
traveller. For this reason, future studies could benefit from combining mobile phone network data with 
traditional data sources. Using the formulation of mobile phone network data presented in this paper, it 
would be reasonably straightforward to combine it with a traditional survey-based model. In this paper 
we have established the applicability of mobile phone network data for forecasting demand models 
using a traditional underlying model. However, the size of the dataset offered by mobile phone 
network data also opens up a range of alternative model formulations, among them: machine learning.

6 ACKNOWLEDGEMENT
This work was conducted within the Demopan project funded by the Swedish Transport 
Administration under Grant TRV 2018/126661. The authors would like to thank Clas Rydergren 
(Linköping University) and David Gundlegård (Linköping University) for fruitful discussions during 
the project time. 

7 LIST OF ABBREVIATIONS
a bus available
AIC Akaike Information Criterion
ASC Alternative Specific Constant
b business (subscript)
B business trip indicator
c cost
𝑐 ∗ chosen mode
𝛿 sum of the distance between the centroid of the start zone and 

closest mode terminal (airport, train station or bus terminal), and 
the distance between the centroid of the destination zone and 
closest mode terminal

d daytrip
h regular night/home location
i observation
l number of trips
m mode
MNL multinominal logit 
n number of boardings
na bus not available
OD origin-destination
p private (subscript)
P probability
𝑞𝑥 probability that a trip’s purpose belongs to class x (in latent class 

specifications)
r peak hour 
s weekend
t time
VTT Value of Travel Time 
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w first wait time (half headway)
𝛽𝑥 utility function parameter of variable x
𝛾𝑥 class probability parameter of variable x 
𝜋 Share of bus trips in NTS 2011-2016
𝜃 Structural nesting parameter of specification III 
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9 APPENDIX A - CALCULATION OF INDICATORS IN TABLE 1
The home antenna of a user is computed as follows:

1. Select all stops of the user between 14:00 and 6:00
2. Group these stops by antenna
3. Calculate the total time spent per antenna for these stops
4. The home antenna is the one with highest time spent

A stop is when the user does not move more than two kilometres for more than two hours. If there are 
no stops during the night, the indicator regular home/night location in Table 1 is set to False, otherwise 
it is True. 

The employment indicator is computed as follows:
1) Select all stops of the user which fulfil all the following criteria:

a) The stop antenna coverage does not overlap with home antenna
b) The start time is after 6:00
c) The end time is before 18:00
d) The day is Monday-Friday
e) The stop duration is at least 3h

2) Group the above stops per antenna and calculate
a) Number of visiting days
b) Total time spent

3) Work location is the antenna that fulfils all the following criteria:
a) has at least 2 visiting days (for one week dataset)
b) no other antenna has a higher total time

10 APPENDIX B – DERIVATION OF LOG LIKELIHOOD ADJUSTMENT
In model specification I and III the log-likelihood (LL) is calculated as a sum of log-likelihoods for 
modes air, rail, and road, while for model specification II the LL is calculated as a sum of the LL for 
modes air, rail, car, and bus. The data used in estimating models I and III is extended for model II by 
adding ‘data’ obtained by random allocation of road choices to bus and car, so that the LL is calculated 
over the extended data.

To get ‘log-likelihood’ values for specifications I and III that are comparable to specification II we 
must correct models I and III by adding a term corresponding to the prediction of the choice of bus 
and car, conditional on the choice of road. This Appendix shows how to calculate that term.

The LL we want for the four alternatives is 

𝐿𝐿 = ∑
𝑛
log 𝑝𝑖,𝑐 ∗ = ∑

𝑚 = {𝑎𝑖𝑟,𝑟𝑎𝑖𝑙,𝑐𝑎𝑟,𝑏𝑢𝑠}
∑

𝑖,𝑐 ∗ = 𝑚
log 𝑝𝑖,𝑚

= ∑
𝑖,𝑐 ∗ = 𝑎𝑖𝑟

log 𝑝𝑖,𝑎𝑖𝑟 + ∑
𝑖,𝑐 ∗ = 𝑟𝑎𝑖𝑙

log 𝑝𝑖,𝑟𝑎𝑖𝑙 + ∑
𝑖,𝑐 ∗ = 𝑐𝑎𝑟

log 𝑝𝑖,𝑐𝑎𝑟 + ∑
𝑖,𝑐 ∗ = 𝑏𝑢𝑠

log 𝑝𝑖,𝑏𝑢𝑠

where  runs over observations𝑖
                gives the probability of the observed choice  for observation 𝑝𝑖,𝑐 ∗ 𝑐 ∗ 𝑖
                selects the observations that have chosen mode  𝑖,𝑐 ∗ = 𝑚 𝑚

In specification II this LL is optimised in the estimation. However, for specifications I and III we do 
not get  and  directly. Since car is always considered to be available, there are two cases:𝑝𝑖, 𝑐𝑎𝑟 𝑝𝑖,𝑏𝑢𝑠
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Bus not available: 𝑝𝑖,𝑐𝑎𝑟 = 𝑝𝑖,𝑟𝑜𝑎𝑑
𝑝𝑖,𝑏𝑢𝑠 = 0

Bus available 𝑝𝑖,𝑐𝑎𝑟 = 𝑝𝑖,𝑟𝑜𝑎𝑑𝑝𝑖,𝑐𝑎𝑟|𝑟𝑜𝑎𝑑 ≈ 𝑝𝑖,𝑟𝑜𝑎𝑑𝑝𝑐𝑎𝑟|𝑟𝑜𝑎𝑑,𝑎
𝑝𝑖,𝑏𝑢𝑠 = 𝑝𝑖,𝑟𝑜𝑎𝑑𝑝𝑖,𝑏𝑢𝑠|𝑟𝑜𝑎𝑑 ≈ 𝑝𝑖,𝑟𝑜𝑎𝑑𝑝𝑏𝑢𝑠|𝑟𝑜𝑎𝑑,𝑎

with  calculated as an overall average and therefore not dependent on . As before, the 𝑝𝑚|𝑟𝑜𝑎𝑑,𝑎 𝑖
subscript a indicates that bus is an available alternative and here, na denotes bus not available. Then 
we get

∑
𝑖,𝑐 ∗ = 𝑐𝑎𝑟

log 𝑝𝑖,𝑐𝑎𝑟 ≈ ∑
𝑖,𝑐 ∗ = 𝑐𝑎𝑟

log (𝑝𝑖,𝑟𝑜𝑎𝑑𝑝𝑐𝑎𝑟|𝑟𝑜𝑎𝑑)

= ∑
𝑖,𝑐 ∗ = 𝑐𝑎𝑟,𝑛𝑎

log 𝑝𝑖,𝑟𝑜𝑎𝑑 + ∑
𝑖,𝑐 ∗ = 𝑐𝑎𝑟,𝑎

(log 𝑝𝑖,𝑟𝑜𝑎𝑑 + log 𝑝𝑐𝑎𝑟|𝑟𝑜𝑎𝑑,𝑎)

= ∑
𝑖,𝑐 ∗ = 𝑐𝑎𝑟

log 𝑝𝑖,𝑟𝑜𝑎𝑑 + ∑
𝑖,𝑐 ∗ = 𝑐𝑎𝑟,𝑎

log 𝑝𝑐𝑎𝑟|𝑟𝑜𝑎𝑑,𝑎

= ∑
𝑖,𝑐 ∗ = 𝑐𝑎𝑟

log 𝑝𝑖,𝑟𝑜𝑎𝑑 + 𝑁𝑐𝑎𝑟,𝑎log 𝑝𝑐𝑎𝑟|𝑟𝑜𝑎𝑑,𝑎

where  is the number of people choosing car with bus available. Similarly,𝑁𝑐𝑎𝑟,𝑎

∑
𝑖,𝑐 = 𝑏𝑢𝑠

log 𝑝𝑖,𝑏𝑢𝑠 ≈ ∑
𝑖,𝑐 ∗ = 𝑏𝑢𝑠

log 𝑝𝑖,𝑟𝑜𝑎𝑑 + 𝑁𝑏𝑢𝑠log 𝑝𝑏𝑢𝑠|𝑟𝑜𝑎𝑑,𝑎

Then we can calculate the adjusted LL for four alternatives as

𝐿𝐿 = ∑
𝑖,𝑐 ∗ = 𝑎𝑖𝑟

log 𝑝𝑖,𝑎𝑖𝑟 + ∑
𝑖,𝑐 ∗ = 𝑟𝑎𝑖𝑙

log 𝑝𝑖,𝑟𝑎𝑖𝑙 + ∑
𝑖,𝑐 ∗ = 𝑐𝑎𝑟

log 𝑝𝑖,𝑐𝑎𝑟 + ∑
𝑖,𝑐 ∗ = 𝑏𝑢𝑠

log 𝑝𝑖,𝑏𝑢𝑠

= ∑
𝑖,𝑐 ∗ = 𝑎𝑖𝑟

log 𝑝𝑖,𝑎𝑖𝑟 + ∑
𝑖,𝑐 ∗ = 𝑟𝑎𝑖𝑙

log 𝑝𝑖,𝑟𝑎𝑖𝑙 + ∑
𝑖,𝑐 ∗ = 𝑏𝑢𝑠 𝑜𝑟 𝑐𝑎𝑟

log 𝑝𝑖,𝑟𝑜𝑎𝑑

+ 𝑁𝑐𝑎𝑟,𝑎log 𝑝𝑐𝑎𝑟|𝑟𝑜𝑎𝑑,𝑎 + 𝑁𝑏𝑢𝑠log 𝑝𝑏𝑢𝑠|𝑟𝑜𝑎𝑑,𝑎

The first three terms here are what comes out of the estimation of specification I and III, while the last 
two terms, the adjustment, can be estimated by

𝑁𝑐𝑎𝑟,𝑎log 𝑝𝑐𝑎𝑟|𝑟𝑜𝑎𝑑,𝑎 + 𝑁𝑏𝑢𝑠log 𝑝𝑏𝑢𝑠|𝑟𝑜𝑎𝑑,𝑎 ≈
𝑁𝑟𝑜𝑎𝑑,𝑎(𝑝𝑐𝑎𝑟|𝑟𝑜𝑎𝑑,𝑎log 𝑝𝑐𝑎𝑟|𝑟𝑜𝑎𝑑,𝑎 + 𝑝𝑏𝑢𝑠|𝑟𝑜𝑎𝑑,𝑎log 𝑝𝑏𝑢𝑠|𝑟𝑜𝑎𝑑,𝑎)

For model III, these conditional choice probabilities could be taken from the model but we judged that 
the better option is to take them from an external source, namely the NTS of 2011-2016, which means 
they can also be applied to model I.
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11 APPENDIX C - SUMMARY OF MODEL SPECIFICATIONS
Table C1: Summary of model specifications.

Specification: Description:

I Joint road utility function for bus and car trips. 
Variables are weighted according to their 
relative mode shares from the 2011-2016 NTS. 
No separation of private and business 
travellers.

II Random assignment to either car or bus for all 
road trips that have an available bus 
connection. Probability of assignment 
proportional to the mode shares of the 2011-
2016 NTS. No separation of private and 
business travellers.

III Road trips assigned to a road nest, which 
contains the modes bus and car. No separation 
of private and business travellers.

IV Business dummy added to the car utility 
function. The business dummy is true if both 
the employment indicator and business 
departure time from Table 1 are true. Based on 
the road nest structure of specification III.

V Segmentation into one private model and one 
business model. Separation based on the same 
business dummy as in specification IV. Based 
on the road nest structure of specification III.

VI Latent class model in which the class 
probability is formulated as a logit function 
containing the same business dummy as in 
specification IV (and a constant for scaling 
purposes). Based on the road nest structure of 
specification III.

VII Latent class model in which the class 
probability is formulated as a logit function 
containing the day trip and regular home/night 
location variables (and a constant for scaling 
purposes). Based on the road nest structure of 
specification III.
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