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Abstract
Reliable forecasting models are needed to achieve the climate related
goals in the face of increasing transport demand. Such models can
predict the long-term behavioural response to policy interventions,
including infrastructure investments, and thus provide valuable pre-
dictions for decision makers. Contemporary forecasting models are
mainly based on national travel surveys. Unfortunately, the response
rates of such surveys have steadily declined, implying that the re-
spondents become less representative of the whole population. A
particular weakness is that it is likely that respondents with a high
valuation of time are less willing to respond to surveys (because they
have less time available for such), and therefore there is a high chance
that they are underrepresented among the respondents. The valua-
tion of time plays an important role for the cost benefit analyses of
public policies including transport investments, and there is no reli-
able way of controlling for this uneven sampling of time preferences.
Fortunately, there is simultaneously an increase in the number of
signals sent between mobile phones and network antennae, and re-
search has now reached the point where it is possible to determine
not only the travel destination but also the travel mode based on
mobile phone network antennae connections. The aim of this thesis
is to investigate if and how mobile phone network data can be used
to estimate transportation mode choice demand models that can be
used for forecasting and planning. Key challenges with using this
data source in the context of mode choice models are identified and
met. The identified challenges include uncertainty in the choice vari-
able, the difficulty to distinguish car and bus trips, and the lack of
information about the trip purpose. In the first paper we propose
three possible model formulations and analyse how the uncertainty in
the choice outcome variable would play a role in the different model
formulations. We also conclude that it is indeed possible to estimate
mode choice demand models based on mobile phone network data,
with good results in terms of behavioural interpretability and signif-
icance. In the second paper we estimate models using a nested logit
structure to account for the difficulty in separating bus and car, and
a latent class model specification to meet the challenge of having an
unknown trip purpose.
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Chapter 1

Introduction

1.1 Background
In mainstream transport planning, the common approach to provide
recommendations of transport policies and public infrastructure in-
vestments is to first model the expected demand of transport. Based
on the modelled demand, a social cost benefit analysis (CBA) is made,
to provide a sound knowledge base for decision makers. In Sweden,
the modelled demand is split into regional trips, which are shorter
than 100 km, and long-distance trips, which are longer than 100 km.
The demand relates to trip frequency, destination choice and trans-
portation mode choice.

Demand models for the transport mode choice have traditionally
been estimated based on national travel behaviour surveys. However,
low response rates has become a major issue in travel behaviour data
collection during the latest decades (Prelipcean et al., 2018). The
main concern of the low response rate is that of sample bias, due to
the risk that travellers with high value of time or belonging to large
households might be less likely to respond to the survey (Stopher and
Greaves, 2007). In Sweden, the currently used long-distance model is
estimated on the national travel survey from 2005-2006. Using out-
dated travel behaviour models is problematic in any transport plan-
ning situation, and even more so now as there is need for interventions
to reach climate related targets as quickly as possible.

It is therefore important to explore new methods to estimate de-
mand models, preferably methods that make use of emerging data
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Chapter 1. Introduction

sources. One of the most promising data sources which is relatively
new in the transport field is travel data that is passively recorded via
mobile phones, i.e. cellular network data. A major advantage of this
data source is that it is passive, meaning that it does not require ac-
tive participation or permission from the traveller, as opposed to GPS
tracking of travellers which still requires recruiting of respondents to
install an app on their smartphone. For a mobile phone operator,
it is possible to collect large amounts of data at a low cost, at least
once code for transforming signals into trips has been implemented
at their servers. One obvious drawback of using a passive data source
is that socio-economic information can usually not be combined with
the trip data due to reasons of integrity and privacy laws. For this
reason, mobile phone network data is often seen as a complement to
survey data rather than a replacement.

1.2 Objectives and scope
The main objective of this thesis is to formulate a travel demand
mode choice model based on mobile phone network data, to meet the
challenges related to this new data source, and to formulate the model
in such a way that it can later be combined with survey data. The
scope of this thesis relates only to the choice of mode, and it is also
limited to investigating how to formulate the data into a logit model,
even though other possible underlying models exist. The challenges
that are considered and met are firstly how to deal with uncertainty
in the choice variable, which is something that is unaccounted for
in the multinomial logit formulation. This first challenge is met in
paper 1: ”Long-distance mode choice model estimation using mo-
bile phone network data”. The second challenge is how to address
the issue of separating the modes car and bus in the mobile phone
network data. This is challenging since the mode classification algo-
rithm is based on the proximity between the network antennae and
transportation infrastructure, and bus and car share the same in-
frastructure. The third challenge is to separate private trips from
business trips. This distinction is important as private and business
travellers are acknowledged to have different valuations of travel time
(Brownstone and Small, 2005). Both the second and third challenge
are met in paper 2: ”Mode choice latent class estimation on mobile
network data”. Note that the models presented in this thesis consider

2



1.2. Objectives and scope

only long-distance domestic trips using the modes train, air, car and
bus.
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Chapter 2

Concepts and context

2.1 Transport planning
An overview of the role of transport demand models in transport
planning is presented in Figure 2.1. Suggested transport policies or
infrastructure investments are combined with other factors such as
expected gross domestic product (GDP) and population into differ-
ent models that produce scenario forecasts. The forecasting results
include the expected volumes of a number of different factors that
are important to society. By translating the non-monetary factors
into monetary terms the social costs and benefits can be calculated
and presented to decision makers as a support tool for decisions. The
mode choice demand model in this thesis is one out of several types
of models that can be included in the forecasting step of Figure 2.1.

Transportation forecasts have traditionally followed the sequential
four-step model or urban transportation planning, which was first
used at the Detroit Metropolitan Area Traffic Study and Chicago
Area Transportation Study in the 1950s (Ortúzar and Willumsen,
2011). The four steps are:

1 Trip generation, which predicts the number of trips originating
in each traffic analysis zone based on land-use, socio-economic
factors of the zone and transport system conditions.

2 Trip distribution, which distributes trips between zone pairs
based on the distance between them.

5



Chapter 2. Concepts and context

3 Mode share, which predicts a particular mode of transport to
each trip.

4 Route assignment, which allocates a route to each origin desti-
nation pair with a certain mode.

Figure 2.1: The role of demand models in transport plan-
ning. Figure from lecture notes in the PhD course Transport
Economics at Linköping University by Jonas Eliasson.

A state-of-the art CBA is based in microeconomic theory, where
the aim is to provide a net benefit or cost value of a policy interven-
tion, measured in money. In order to measure the relevant aspects on
the same scale, it is necessary to use some assumptions, and also to
have a method of how to translate non-monetary values into monetary
terms. Firstly, it is assumed that all goods are exchangeable with one
another (Isacs, 2021). In the context of CBA for transportation plan-
ning this would for instance mean that the cost of negative health as-
pects of particle emissions from transport is exchangeable with travel
time savings. Furthermore, welfare analysis (including CBA) is built
on Pareto-optimality, which means that no preference criterion can
be better off without making at least one preference criterion worse
off. When all aspects of social costs and benefits are collapsed into
only one dimension, the cost dimension, one uses potential Pareto
optimality instead of the original Pareto optimality. Potential Pareto
optimality means that one aspect or preference criterion can actually
be worse of than the other, as long as it is theoretically possible to
compensate for the loss (Varian, 1992).

6



2.2. Swedish domestic long-distance travel

The monetary values of different values that are originally non-
monetary are normally derived from either stated preference (SP)
studies, or revealed preference (RP) studies. In SP studies, the mon-
etary values are derived from the responses to surveys where the re-
spondents have been asked what choices they would make if faced with
different choice situations. In RP studies, it is instead the observed
choices of individuals that determine its monetary value.

A central concept which is related to transport planning is the
valuation of travel time (in Figure 2.1 this is the monetary valuation
of travel time). This is one of the monetary values that needs to be
derived in order to enable a CBA. The value of travel time (VTT) is
defined as the price people are willing to pay to acquire an additional
unit of time. In economic terms this can be described as the marginal
utility of travel time divided by the marginal utility of travel cost:

V TT =
∂u
∂t
∂u
∂c

(2.1)

where u denotes the utility, t the travel time and c the travel cost (see
Section 4.1 for more details about utility functions). In this thesis,
these values are derived based on mobile phone network data, in other
words revealed preference data. ∂u

∂t and ∂u
∂c can be calculated from the

parameters which are estimated in the ”Forecasts of travel demand”
box in Figure 2.1, see Section 4.1 for more details.

Transport demand models based on survey data have been proved
useful for predicting travel demand. Andersson et al. (2017) com-
pared Swedish national forecasts for passenger transport from 1975
to 2009 with actual outcomes. The results gave a root mean square
error (RMSE) of 0.38 between predicted and actual passenger dis-
tance travelled, which is better than simple trend lines which gave a
RMSE of 0.64 for the same time and place. When false assumptions
of future GDP and fuel prices were corrected for the RMSE decreased
to 0.12, and 0.18 respectively, which suggest that the models have a
strong predictive power as long as assumptions of future GDP and
prices are decent.

2.2 Swedish domestic long-distance travel
The models in this thesis are only estimated on long-distance trip
data (trips longer than 100 km). The motivation behind this is that

7



Chapter 2. Concepts and context

long-distance trips are more rare than regional trips, which means
that there are fewer observations of long-distance trips. Consequently
there is an even greater need to find alternative sources of trip data
for long-distance trips, to increase the number of observations which
support the statistical parameter estimation.

The origin and destination zones used in this thesis are based on
the traffic analysis zones used to model long-distance trips by the
Swedish Transport Administration, which are shown in Figure 2.2.
These are larger than the ones used for regional trips which makes
it more appropriate for mobile phone network data as the coverage
area of an antenna tends to be smaller than the analysis zones. There
are 682 zones in the long-distance case, which means that one zone
covers on average about 770 km2, and that there are 682x682 possible
combinations of origin-destination pairs that comprise a trip. The
supply data (see Section 3.2) is approximated using the centriod of the
origin zone as the start of the trip and the centroid of the destination
zone as the end of the trip.

In travel survey data, about 12% of long-distance trips are busi-
ness trips, while the remaining 88% are different types of private trips
such as vacation trips or visiting friends and family. This differs from
regional trips in which common private trips are commuting trips to
work or school, shopping trips, trips to recreational activities either
on your own or accompanying children (Holmström and Wiklund,
2015; Trafikanalys, 2017).
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2.2. Swedish domestic long-distance travel

Figure 2.2: The transport analysis zones for long-distance
transport in Sweden. Figure generated in QGIS based on zone
coordinates from the Swedish Transport Administration.
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Chapter 3

Supply and demand
data

3.1 Mobile phone network data
The underlying mobile phone network data, or demand data, used in
this thesis consists of sequences of antennae that a phone has con-
nected to during a long-distance trip, along with the antennae posi-
tions. A regular smartphone sends and receives signals to an antenna
every few minutes. These signals can be a phone call, sending or
receiving a text message, actively using the internet, apps using in-
ternet in the background, or the phone operating system working in
the background (Gundleg̊ard, 2018). The data that is used in this
thesis is commonly referred to as xDR data1, and originally consist of
subscriber id, cell id and timestamps for each signal sent or received.
Due to privacy reasons, subscriber IDs are hashed2 by the operator
before the data is shared with transport researchers. Furthermore,
the cell IDs and timestamps never leave the operator servers. In-

1xDR stands for Detail Record of call, text or internet data, as opposed to the
traditional CDR or Call Detail Record data, which only contain a Detail Record
of calls and text messages.

2Hashing data means that data are passed through a formula to produce a result
(usually a string of characters) of a certain length, regardless of the length of the
original data. Passing the same data through the formula will always produce the
same result. Hashing differ from encrypting in the sense that the transformation
is one way, which means that once data has been hashed it will never be possible
to recover the original data.
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Chapter 3. Supply and demand data

stead, the data is processed at the operator servers using the geomet-
ric Route/Antenna method described in Breyer et al. (2021). The
processed data contain the timing of the trip (weekday or weekend,
peak or off-peak), whether the trip was a day trip or an overnight stay,
origin zone, destination zone and identification probability for road,
rail and air, along with some simple indicators about the traveller,
derived from the traveller’s short distance trips within one week.

Even though mobile phones have been used for a long time, the
number of sent and received signals has greatly increased which means
that the time resolution of positions is now a lot more useful for trans-
portation researchers. The spatial resolution of the mobile phone net-
work data depends firstly on the density of antennae, which ranges
from being placed a couple of hundred meters apart in urban areas
to roughly 10 km apart in rural areas. In urban areas, antennae
often have a mixture of different coverage areas, such that some an-
tennae can be found within the coverage area of another antenna.
The probability of connecting to an antenna during a trip depends on
the proximity between phone and antenna, the position of the phone
when data is sent, the local topography, the height of nearby build-
ings, the current network load of different antennae, and the type of
antenna the phone is configured to prefer (GSM, WCDMA, LTE or
5G) (Gundleg̊ard, 2018). In practice this means that two trips using
the same mode, on the same route, between the same OD pair may
connect to different sequences of antennae.

The data used in this thesis comprise of a table of roughly 100 000
long-distance trips (containing information about origin zone, desti-
nation zone, the probabilities of different modes per trip, timing of
trip, and so on) that were sampled randomly out of all available trips
to be exported from the operator servers. The data were picked from
one week in 2018 (pre-pandemic).

3.2 Travel supply data
In order to model transport demand in a realistic way, it is neces-
sary to have information about the travel supply between all origin-
destination pairs. In this thesis, the travel supply data is provided by
the Swedish Traffic Administration3. It includes information about
travel costs, in-vehicle travel times, and when applicable the number

3The data was Skimmed from Emme/2 for the year 2017 situation.
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3.2. Travel supply data

of transfers, the headway and the total waiting time. It also includes
the distance between the zone centroid and the closest terminal (bus
terminal, train station or airport depending on the mode), this mea-
sure is used to represent the connecting trip to the main mode4 of
the trip. The included travel costs for train and bus are from 2011
but adjusted to 2017 according to inflation between 2011 and 2017.
The prices for air travel are from 2018-2019 but adjusted to 2017 ac-
cording to inflation. This is the latest available data at the time of
writing.

The case of car travel cost is difficult to measure. The information
provided by the supply data from the Swedish Transport Administra-
tion is car distance, which we multiply in both papers by a fixed car
cost per kilometre. However, in real life the car per kilometre cost
vary by a number of factors. First, it varies due to differences in
energy efficiency between different car models, as well as the type
of fuel used (there is a significant price difference between electricity
and combustion engine fuels). The per kilometre cost also depend on
the type of car access (car ownership, private leasing or company car
which affect both prices and taxes), and also by depreciation (Kristof-
fersson et al., 2021). The average per kilometre cost of car travel in
Sweden is unknown. This means that we can only make an educated
guess on the car cost per kilometre. For business trips we have set
this value to 1.85 SEK/km, as this is the legally regulated subsidy
to employees using a private car for business trips5 in 2018 (same
year as the mobile phone network dataset was collected). For private
long distance trips we assume that the per person per kilometre cost
should be lower since the average car occupancy for long-distance
trips is 2.22 travellers per car Trafikverket (2020), so we set it to 0.9
SEK/km.

It is worth mentioning that for all modes of transport there is
variation in actual prices between origin-destination pairs, even within
the same mode. Kristoffersson et al. (2021) studied trips between
the three largest cities in Sweden and concluded that there is a high
variation in travel costs for car, train and air trips, with the highest
variation found in air travel (with a coefficient of variation of 60%).
As we only use a representative value of the price that (hopefully)
reflects the average price, this likely causes a downward attenuation

4The main mode of a trip is the transport mode that was used most during the
trip, based on distance.

5Inkomstskattelagen 12 Kap. 5 § 2007.
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Chapter 3. Supply and demand data

bias in the models that are used in paper 1 and 2, meaning that the
cost parameter is smaller than it would have been if we had perfect
information about the exact price of each traveller. This problem
is slightly enhanced in mobile phone network data as we have no
information about the party size in each car.

3.3 Contrasts between mobile phone net-
work data and survey data

There are several differences between travel survey data and mobile
phone network data formulated for travel purposes. The one which
has the most implications for demand modelling is the fact that mobile
phone network data is subject to uncertainty in the mode choice. Al-
though there might be reporting errors also in the survey mode choice
data, it is generally assumed to be error free. This makes it possible to
use the regular logit model, which has room for measurement errors in
the independent variables (formulated as an explicit error term), but
not in the choice variable (this is described in more detail in Section
4.1). In paper 1 it is described in detail what a model which takes this
choice uncertainty into account could look like. Three different model
formulations are presented and compared. The first ”antenna” model
starts off directly from antennae observations and is considered to be
fully theoretically consistent. The drawback of this method is that
the necessary resolution of data is not always available to a trans-
port modeller. Factors that limit the access to this data are local
privacy related laws and the willingness and possibility of the mobile
phone operator to collaborate with transport researchers. The other
two methods use a table of trips generated by the Route/Antenna
method in Breyer et al. (2021) as a starting point. In the case of
paper 1 and 2 we only had access to data at the level of a table of
long-distance trips, so the second and third method of paper 1 use
the table of trips as a starting point. In the second method the mode
classification probabilities used in the pre-processing step by Breyer
et al. (2021) are integrated in a logit model, and in the third method
it is assumed that the most probable mode of the mode classification
probabilities is the chosen mode.

Another factor which differs between mobile phone and survey
data is the sample size. Surveys are relatively expensive for each new
observation in the dataset, while mobile phone data is cheap to scale

14



3.4. Ethical aspects

up to any number of observations once the trip identification code has
been implemented at the operator servers. This is indeed useful for
transport models where it has sometimes been difficult to estimate
discrete choice models based on revealed preference data. The reason
for this difficulty has been that there have not been enough trade-off’s
in the dataset between the time and cost of different modes. Tradi-
tionally this has been solved by resorting to stated preference data,
which unfortunately differ from revealed preference data in terms of
values of travel time (Brownstone and Small, 2005).

As mentioned, the low response rates of survey data risk resulting
in a sample of the population with a relatively low valuation of time,
which in that case would mean that the calculated valuations of travel
times from the estimated would be too low.

Finally, mobile phone network data lack socio-economic informa-
tion, which is a clear disadvantage for estimating forecasting mod-
els. This is thus a strong motivation for eventually combining mobile
phone network data with survey data.

3.4 Ethical aspects
In order to use mobile phone network data for travel demand esti-
mation purposes it is crucial to fulfil legal and ethical requirements
on privacy protection. No information that can connect a cellphone
number or any other personal identifier (an explicit identifier) with a
series of connections to mobile phone antennae are allowed to leave the
mobile phone operator servers. Even so, it is still necessary to make
sure that no individual can be identified jointly with another data
source from the origin-destination matrices sent out from the mobile
phone operator servers as input for the travel demand model estima-
tion (also called a quasi-identifier). Badu-Marfo et al. (2019) discuss,
among other things, anonymization operations and techniques within
the context of big transportation data. According to Badu-Marfo
et al. (2019), the three most common anonymization operations are
generalisation: replacing precise information with a taxonomy of its
parent value, suppression: simply removing some attribute, and per-
turbation: replacing some of the values of the individual attributes
while maintaining the aggregate characteristics of the dataset. For
the sake of this project, generalisation (of time of day and length of
stay) and suppression (of any explicit identifiers) has been used before
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the data leaves the mobile phone operator servers.
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Chapter 4

Discrete choice methods

4.1 The multinomial logit model and nested
logit

The travel demand models in this thesis are all based on the multinomial
logit model (MNL), or extensions of this model. The MNL model
is based on utility theory, where it is assumed that the utility, or
preference, of individuals can be expressed by some utility function
U = V + ϵ, where V is the systematic utility which consists of a num-
ber of explanatory variables and parameters for each of the explana-
tory variable and ϵ is an error term that account for measurement
errors in the explanatory variables as well as variations in preferences
between individuals. A simple example of a systematic utility func-
tion for the case of mode choice demand models could be for instance
Vm = ASCm + βcostcm + βtime,mtm for transportation mode m. Here
the parameters to be estimated would be the alternative specific con-
stant ASCm, βcost and βtime,m, and the explanatory variables would
be the travel cost cm and the travel time tm. Note that the cost pa-
rameter is shared by all modes in order to maintain microeconomic
consistency (the value of money must be constant at any fixed point
in time), while the time parameters are allowed to vary depending on
the comfort of each mode. In this case of a linear utility function, the
value of travel time given by Equation (2.1) becomes: V TT =

βtime,m

βcost
.

The MNL was originally proposed by (McFadden, 1974) and it is ex-
pressed as:

17



Chapter 4. Discrete choice methods

Pn(i) =
eVin∑

j∈Cn
eVjn

(4.1)

where it is assumed that there exists a utility function Vjn that de-
scribes the preferences of decision maker n for each choice j in choice
set Cn. Pn(i) is then the probability that decision maker n chooses
alternative i. In the mode choice models of this thesis, the alterna-
tives in Cn would be the different modes that are available for the
decision maker n for the origin-destination pair of the trip, and the
chosen mode would be alternative i.

The error term ϵ is assumed to be Gumbel distributed and inde-
pendent identically distributed. The Gumbel distribution is similar
to the normal distribution and it is chosen for reasons of analytical
convenience. The aim is to maximise the expression:

max
β

L(β) = max
β

N∏
n=1

∏
i∈Cn

Pn(i)
yni (4.2)

with respect to the utility function parameters β where L(β) is the
likelihood function, N is the total number of observations and

yni =

{
1 if decision maker n chose alternative i

0 otherwise
(4.3)

The maximisation in Equation (4.2) is equivalent to maximising

max
β

ln(L(β)) = max
β

N∑
n=1

∑
i∈Cn

yni ln(Pn(i)) = max
β

N∑
n=1

ln(Pn(i))

(4.4)
which can be done using maximum likelihood estimation since

Equation (4.4) is differentiable with respect to its parameters.
Once the parameters have been estimated it is relevant to inves-

tigate the significance of each estimated parameter. The significance
of a parameter is often measured in terms of t-values. The t-value of
a parameter β is calculated as:

tβ̂ =
β̂ − β0

s.e.(β̂)
(4.5)

where β̂ is an estimator of the parameter β, β0 is the null hypoth-
esis (set to 0 for most applications), and the standard error s.e.(β̂) is

18



4.1. The multinomial logit model and nested logit

computed from the standard deviation σ and the number of observa-
tions n as: s.e.(β̂) = σ√

n
.

In cases when some of the alternatives are more similar to each
other than to other alternatives, it is necessary to use an extension of
the multinomial logit model, called nested logit. The reason for this
is that if the modeller introduces a new alternative which is similar to
an already existing one, this will affect the probabilities of the non-
similar alternatives in an unintuitive way. The classical example of
this is a model that includes the alternatives car, train and red bus.
If a blue bus is introduced as a fourth alternative, from the choice
maker’s point of view it would be essentially the same as the red
bus, which should mean that the car and train probabilities should
stay the same. However, if the blue bus is entered as a separate
alternative in the multinomial logit model, the probabilities of car
and train would actually change. In order to obtain realistic results
also when introducing alternatives which have some similarities, the
similar alternatives can be placed in the same nest in a nested logit
structure. A toy example of such a structure is shown in Figure 4.1.

Figure 4.1: A toy example of a nested logit structure for urban
mode choice.

The nested logit model is expressed as:

Pn(i) =
eµmVin∑

j∈Cmn
eµmVjn

(
∑

l∈Cmn
eµmVln)

µ
µm∑M

p=1(
∑

l∈Cpn
eµpVln)

µ
µp

(4.6)

where µ is the scale parameter and µm ∈ [0, 1] denotes the nesting
parameter of nest m. M is the set of all nests in the model and Cmn is
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Chapter 4. Discrete choice methods

the set of alternatives in nest m for individual n. The nest parameter
is typically estimated along with the other parameters β, where an
estimated nest parameter close to 0 indicates that the alternatives
within the nest are similar, and a nest parameter close to 1 indicates
the opposite. Similar in this context means that the error terms are
correlated, since the error term includes any aspect of the choice that
has not been explicitly included in the model. When µm = 1 the
nested logit model in Equation (4.6) collapses into the multinomial
logit model in Equation (4.1) (note that the scale parameter µ has
implicitly been set to 1 in Equation (4.1) for clarity).

4.2 Latent class models
Latent class models were developed by Kamakura and Russell (1989),
Gupta and Chintagunta (1994), Swait (1994), Gopinath (1995) and
Bhat (1997). The models are typically specified with an underlying
multinomial or nested logit structure. This type of model makes it
possible to express heterogeneity in sensitivities across individuals
by introducing latent, or hidden, classes. Here, both the number of
classes as well as the variables involved in separating the classes is
determined by the modeller (Hess, 2014).

In the case of latent class models, the likelihood function is ex-
pressed as:

Ln(β, π) =
S∑

s=1

πns

(
Tn∏
t=1

Pni∗t(βs)

)
(4.7)

where

Pni∗t(βs) =
eVni∗t(βs)∑

j∈Cn
eVnj∗t(βs)

(4.8)

s denotes the class in the set of possible classes S, i∗ is the chosen
alternative, n is the individual, t is the observation, β is the parameter
vector to be estimated, which can be different for different classes, and
finally πns is the probability of individual n belonging to class s. Note
that in this thesis, n and t are actually the same as it is unknown if
the same individual has made several long-distance trips in the mobile
phone network data which is exported from the operator servers. πns
is often expressed in terms of a logit function, but this is not strictly
necessary.
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Contribution of the
thesis

5.1 Research gap
Most research on using mobile phone data as a source of travel data
has so far focused on the extraction of origin-destination-matrices
(Alexander et al., 2015; Bekhor et al., 2013; Caceres et al., 2020;
Calabrese et al., 2011; Gariazzo et al., 2019; Gundleg̊ard et al., 2016;
Tolouei et al., 2017; Toole et al., 2015).

Zannat and Choudhury (2019) conducted a literature review with
regards to big data sources for public transport planning. The ma-
jority of the papers found focused on using big data to complement
traditional models and applications. Two examples of this for the case
of mobile phone network data is Janzen (2019) and Brederode et al.
(2019) who both combined mobile phone network data with survey
data on the origin-destination level to estimate travel demand models.
Janzen (2019) estimated an activity based model based on a synthetic
population, while Brederode et al. (2019) used a multi-proportional
gravity model to fuse mobile phone network data with survey data on
the origin-destination level before parameter estimation. One of the
concluding points in the literature review by Zannat and Choudhury
(2019) was that there is a research gap in finding novel applications
for big data in the transportation sector.

Dypvik Landmark et al. (2021) investigated the robustness and
quality of mobile phone network data compared to other data sources,
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and found that mobile phone network data is particularly useful for
long-distance trips, due to the limitation of spatial resolution. Fur-
thermore, Janzen et al. (2018) compare mobile phone network data
to survey data and note that long-distance trips were severely under-
reported in the survey data.

Mobile phone network data have been used on its own for route
choice modelling (Bierlaire and Frejinger, 2008; Bwambale et al.,
2019a,b), and also in combination with survey data for route choice
purposes (Bwambale et al., 2020).

Huang et al. (2019) systematically searched for and reviewed mode
classification based on mobile phone network data. Even though 22
studies were found in which the transport mode is determined directly
from mobile phone network data, no other authors have estimated
behavioural mode choice demand models directly from mobile phone
network data.

5.2 Research questions
The research gaps identified in the previous section led to the following
research questions:

1 Can mobile phone network data be used to estimate mode choice
demand models and if so, how?

2 Which key challenges are related to the use of mobile phone
network data in mode choice model estimation?

3 How can these key challenges be met?

Research question 1 is addressed in paper 1, while research questions
2 and 3 are addressed in paper 2.

5.3 Contributions of Paper 1 and Paper 2
The conclusion of this thesis is that mobile phone network data can
be used to estimate realistic mode choice demand models in terms of
behavioural response, and that this can be done in several different
ways. Three variations of mode choice models is presented in paper
1. A key insight is that in the case of mobile phone network data,
there is uncertainty in the choice variable, meaning that we cannot
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determine with full certainty which mode of transport was used, even
though the pre-processing mode identification algorithm by Breyer
et al. (2021) performed well when evaluated on a small validation set.
This has implications on the choice of modelling method as it is as-
sumed in the original derivation of the multinomial logit model that
the choice is known with full certainty. This is a problem which has
not been given much attention in traditional survey based models,
where logit or nested logit models are commonly used, even though
also survey responses can be subject to error. In paper 1 we derive
a probabilistic model directly from the antennae observations, where
the uncertainty is taken into account in a formally correct way. Since
the data necessary to estimate this model was not available to us,
we also derived one extension of the logit model which incorporates
the mode identification probability provided by Breyer et al. (2021)
into the logit model. A proof-of-concept estimation of this extended
logit model was compared to an estimation of a logit model where the
most probable mode was assumed to be the chosen mode, using sim-
ple utility functions. Both of the implemented logit models provided
reasonable estimation results in terms of behaviourally sensible pa-
rameters and high t-values. The logit models were also theoretically
compared with the probabilistic model, and differences were analysed
by comparing different situations in which the assumption that the
most probable mode is the chosen mode would work more or less well.

Two other key challenges were identified and met in paper 2. The
first challenge is that bus and car trips cannot be distinguished in
the dataset since the mode is determined from the proximity between
antennae and transport infrastructure, and bus and car travellers both
use the road infrastructure. The most successful way of handling this
turned out to be to use a nested logit structure, where all road trips
were assigned directly to a road nest, which contain utility functions
for both car and bus. In this way, separate parameters could be
estimated for bus and car trips, even though the choice was assigned
directly to the road-nest level.

The second challenge is that the trip purpose can not be deter-
mined from mobile phone network data. From a forecasting transport
planning perspective, it is relevant to separate private travellers from
business travellers since they are known to have distinctly different
valuations of travel time. Several different approaches were tested.
The method which turned out to have the best model fit was a latent
class model, in which two classes with distinctly different valuations
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of travel time could be distinguished from the indicators derived from
the mobile phone network data at the operator servers.

Future research directions include the combination of mobile phone
network data with survey data in order to benefit from the large num-
ber of observations from mobile phone network data along with the
socio-economic and trip information found in survey data. In partic-
ular party size is an important factor in the probability of making a
bus trip, and it would also provide a better travel cost estimate of car
trips.

It would also be of interest to investigate the usefulness of alter-
native methods, for instance data-driven models such as supervised
machine learning methods (see van Cranenburgh et al. (2022) for a
discussion of current practices of machine learning used for choice
modelling). Another interesting option would be to use parts of the
dataset for validation and testing, to evaluate out of sample prediction
and avoid overfitting, in a similar way to what is common practice in
machine learning. This has traditionally not been done in transport
models when survey data has been used, as the number of observa-
tions is relatively small and each observation is expensive, but it can
in practice be done now that we can use mobile phone network data.
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