Evaluation of long-term maintenance of switches & crossings with respect to life-cycle costs and socio-economic impact

Abderrahman Ait-Ali\(^1\), Björn Pålsson\(^2\), Kristofer Odolinski\(^1\), Peter Torstensson\(^1\)

21st Nordic Seminar on Railway Technology

21-06-2022, Tampere

\(^1\) The Swedish National Road and Transport Research Institute (VTI), SE-102 15 Stockholm, Sweden
\(^2\) Mechanics and Maritime Sciences/CHARMEC, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
OUTLINE

1. Background
2. Focus & Aim
3. Methodology
4. Preliminary analysis
5. Conclusions
1. BACKGROUND

- **Maintenance of switches and crossings (S&Cs)** is a (necessary) requirement for good quality freight and passenger train services.

- An **efficient** maintenance of S&Cs **minimizes the (socio-economic) costs** over the life cycle of the asset, i.e., LCCs.

- LCCs are affected by:
 - Train **traffic** (type of traffic, traffic volume, etc.)
 - Design of the **infrastructure** (type of switch, components, etc.)
 - **Maintenance** strategy
 - **What** measures (e.g., grinding, track direction) have been performed?
 - **When/How often** were the measures performed?
2. FOCUS & AIM

- The project focuses on **standard turnout S&Cs** and aims to analyze dependencies between:
 - **Maintenance** strategies (with a focus on **rail grinding** and **track alignment**)
 - Expected **socio-economic effects** over the life cycle

- The goal is to:
 - Calculate LCCs of different **maintenance strategies** (preventive/corrective)
 - Find **more efficient** maintenance strategies for S&Cs
2. METHODOLOGY

a) Overview
b) Mechanical simulation
c) LCC modeling
d) Maintenance strategies
e) Preventive & corrective measures
a) OVERVIEW

• The methodology is based on two main components:

 • **Component 1**: Simulation of the damage evolution in S&C for different maintenance strategies to investigate the relationship between maintenance status and damage development at S&C

 • **Component 2**: LCC modeling to calculate the socio-economic costs of a particular maintenance strategy over the S&C life cycle
b) MECHANICAL SIMULATION

- The dynamic vehicle-S&C interaction and resulting mechanical damage over time in S&C is investigated by means of simulation.

- The goal is to investigate the relationship between:
 - the maintenance measures, i.e., track tamping & rail grinding
 &
 - the development of mechanical damage, i.e., in the form of track irregularity (misalignment) and contact geometry degradation.
b) **MECHANICAL SIMULATION**

- Simulation of accumulated S&C damage using iterative Whole System Model scheme
- The simulations will be performed for different maintenance interventions to compare long-term performance

Dynamic vehicle-track interaction

- Simulation output
- Updated damage state
- Damage modelling
 - Running surface
 - Ballast settlement
 - Sleeper & crossing bending loads (fatigue risk)
c) LCC MODELING

- LCCs cover different **phases** and **costs/benefits**, e.g.,
 - Maintenance, replacement and operations, etc.
 - Costs (labor, traffic loss, etc.) or benefits (increased traffic reliability, etc.)
- A model of the total **LCCs** (noted $TSEC$) is

\[TSEC = CML + LTP - GTP \]

<table>
<thead>
<tr>
<th>Phase of the life cycle</th>
<th>Socio-economic costs (-) and benefits (+)</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance (or replacement)</td>
<td>(-) Costs of material and labour</td>
<td>CML</td>
</tr>
<tr>
<td></td>
<td>(-) Loss in potential traffic production</td>
<td>LTP</td>
</tr>
<tr>
<td>Operations</td>
<td>(+) Gain in future traffic production (quality)</td>
<td>GTP</td>
</tr>
</tbody>
</table>
d) MAINTENANCE STRATEGIES

- The impact of maintenance and operations on LCCs are closely dependent on the adopted maintenance strategy.

- Different strategies (preventive/corrective) have different characteristics (requirements & consequences).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Preventive (proactive)</th>
<th>Corrective (reactive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td>Requires more knowledge about the assets (e.g., frequent inspections)</td>
<td>No knowledge is required</td>
</tr>
<tr>
<td>Traffic</td>
<td>Pre-planned and less expensive losses of traffic (e.g., maintenance windows)</td>
<td>Unplanned and more expensive losses of traffic (e.g., delay, accidents)</td>
</tr>
<tr>
<td>Work</td>
<td>Shorter and less expensive maintenance work (labour and material)</td>
<td>Longer and more expensive maintenance work (unplanned, time pressure, etc.)</td>
</tr>
</tbody>
</table>
e) PREVENTIVE & CORRECTIVE

• To model (among others) the relation between
 • (Performed) **preventive** measures
 • (Need for) **corrective** maintenance

• A regression analysis is performed
 • **Corrective** represent, e.g., #failures
 • **Preventive** represent, e.g., #preventive maintenance measures.

• **X** holds selected important variables related to
 • Traffic (volume, type of traffic, axle load, etc.)
 • Infrastructure (type/model of S&Cs, etc.).
3. PRELIMINARY ANALYSIS

a) Databases
b) Data (& KOMBI)
c) Key S&C
d) Life cycle
e) Case study
a) DATABASES

- The relevant databases are managed by Trafikverket
- Data are available for different assets, here only related to S&C are selected

<table>
<thead>
<tr>
<th>Database</th>
<th>Content</th>
<th>Time (interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIS</td>
<td>Infrastructure</td>
<td>In 2021, also in 2014</td>
</tr>
<tr>
<td>Bessy</td>
<td>Inspections</td>
<td>Between 2014 and 2021</td>
</tr>
<tr>
<td>Ofelia</td>
<td>Failures/delays</td>
<td>Between 2014 and 2021, also from 2003</td>
</tr>
<tr>
<td>Lupp</td>
<td>Train traffic</td>
<td>During 2017</td>
</tr>
</tbody>
</table>
a) DATA (& KOMBI)

<table>
<thead>
<tr>
<th>Data(bases)</th>
<th>Main content (columns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure 2021 (BIS)</td>
<td></td>
</tr>
<tr>
<td>Replacement date</td>
<td>Object number</td>
</tr>
<tr>
<td>S&Cs number and model</td>
<td>Location, track</td>
</tr>
<tr>
<td>Maximum allowed speed</td>
<td></td>
</tr>
<tr>
<td>Inspections 2014-2021 (Bessy)</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>S&Cs number and model</td>
</tr>
<tr>
<td>Location</td>
<td>Inspection type</td>
</tr>
<tr>
<td>S&Cs Component</td>
<td>Recommended action</td>
</tr>
<tr>
<td>Failures 2014-2021 (Ofelia)</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Object number</td>
</tr>
<tr>
<td>S&Cs number and model</td>
<td>S&Cs Component</td>
</tr>
<tr>
<td>Location</td>
<td>Disturbed trains</td>
</tr>
<tr>
<td>Delay</td>
<td>Recommended action</td>
</tr>
<tr>
<td>Train traffic 2017 (Lupp)</td>
<td></td>
</tr>
<tr>
<td>Departures & arrivals</td>
<td>Traffic type</td>
</tr>
<tr>
<td>Train vehicles</td>
<td>Train load & km</td>
</tr>
</tbody>
</table>

Diagrams

- **BIS @2021**
 - Inläggningsdatum (>2014)
 - Objnr
 - Valnr
 - Plats (Bandel-km)

- **Inspections - Bessy (2014-2021)**
 - Datum
 - Typ (korrektiv/preventiv/underhåll/special/?)
 - Valnr
 - Objnr
 - Plats (Bandel-km)

- **Failures 2014-2021 (Ofelia)**
 - Datum
 - Objnr
 - S&Cs number and model
 - S&Cs Component
 - Location
 - Disturbed trains
 - Delay
 - Recommended action

- **Train traffic 2017 (Lupp)**
 - Departures & arrivals
 - Traffic type
 - Train vehicles
 - Train load & km

Notes

- Link using **Objnr**
- Link using **Valnr**
- Link using **Plats** (Bandel-km)
b) **KEY S&C**

- Focus on model **60E-R760-1:15**
- **Spatiotemporal** distribution of S&Cs
- Focus on S&Cs **replaced in 2014**
- Failures and **delays** statistics
- **#observations** (inspections, maintenance measures)
- Train traffic

➔ **Vxlnr 133 in Kimstad**
c) LIFE CYCLE (OF THE SELECTED KEY S&C)

Timeline (2014-2021) of the life cycle of the selected S&C

<table>
<thead>
<tr>
<th>Alignment</th>
<th>Failure</th>
<th>Alignment</th>
<th>Failure</th>
<th>Inspection</th>
<th>Inspection</th>
<th>Failure</th>
<th>Alignment</th>
<th>Grinding</th>
</tr>
</thead>
</table>

Alignment
4. CONCLUSIONS

a) Highlights

b) Next steps
a) HIGHLIGHTS

• A **methodology** combining different approaches (simulation, regression & LCA) for the evaluation of long-term maintenance of S&Cs

• Consideration of **socio-economic impacts** in the LCCs

• Linking different data sources into a **combined database** for use in similar LCC studies

• Identifying **key S&Cs** with regards to different characteristics (model, #obs, traffic, etc.)

• **Timeline** of selected S&Cs for LCA
b) NEXT STEPS

- Mechanical simulations
 - Degradation of S&Cs
- Regression analysis
 - Effect of preventive measures on corrective maintenance
- LCC model combining the simulation results and regression output
 - Evaluation of the LCCs including the socio-economic impacts
 - Comparison of different maintenance strategies for S&Cs
Thank you for your attention!
Question?

abderrahman.ait.ali@vti.se