

OUTLINE

- 1. Background
- 2. Focus & Aim
- 3. Methodology
- 4. Preliminary analysis
- 5. Conclusions

1. BACKGROUND

- Maintenance of switches and crossings (S&Cs) is a (necessary) requirement for good quality freight and passenger train services
- An efficient maintenance of S&Cs minimizes the (socio-economic) costs over the life cycle of the asset, i.e., LCCs
- LCCs are affected by
 - Train traffic (type of traffic, traffic volume, etc.)
 - Design of the infrastructure (type of switch, components, etc.)
 - Maintenance strategy
 - What measures (e.g., grinding, track direction) have been performed?
 - When/How often were the measures performed?

2. FOCUS & AIM

 The project focuses on standard turnout S&Cs and aims to analyze dependencies between

Standard turnout

Maintenance strategies (with a focus on rail grinding and track alignment)

Expected socio-economic effects over the life cycle

- The goal is to
 - Calculate LCCs of different maintenance strategies (preventive/corrective)
 - Find more efficient maintenance strategies for S&Cs

2. METHODOLOGY

- a) Overview
- b) Mechanical simulation
- c) LCC modeling
- d) Maintenance strategies
- e) Preventive & corrective measures

a) **OVERVIEW**

The methodology is based on two main components:

 Component 1: Simulation of the damage evolution in S&C for different maintenance strategies to investigate the relationship between maintenance status and damage development at S&C

 Component 2: LCC modeling to calculate the socio-economic costs of a particular maintenance strategy over the S&C life cycle

b) MECHANICAL SIMULATION

 The dynamic vehicle-S&C interaction and resulting mechanical damage over time in S&C is investigated by means of simulation

- The goal is to investigate the relationship between:
 - the maintenance measures, i.e., track tamping & rail grinding

&

 the development of mechanical damage, i.e., in the form of track irregularity (misalignment) and contact geometry degradation

b) MECHANICAL SIMULATION

- Simulation of accumulated S&C damage using iterative Whole System Model scheme
- The simulations will be performed for different maintenance interventions to compare long-term performance

Dynamic vehicle-track interaction

Simulation output

Updated damage state

Damage modelling

Sleeper & crossing bending loads (fatigue risk)

c) LCC MODELING

- LCCs cover different phases and costs/benefits, e.g.,
 - Maintenance, replacement and operations, etc.
 - Costs (labor, traffic loss, etc.) or benefits (increased traffic reliability, etc.)
- A model of the total LCCs (noted TSEC) is

$$TSEC = CML + LTP - GTP$$

Phase of the life cycle	Socio-economic costs (-) and benefits (+)	Notation
Maintenance (or replacement)	(-) Costs of material and labour	CML
	(-) Loss in potential traffic production	LTP
Operations	(+) Gain in future traffic production (quality)	GTP

d) MAINTENANCE STRATEGIES

- The impact of maintenance and operations on LCCs are closely dependent on the adopted maintenance strategy
- Different strategies (preventive/corrective) have different characteristics (requirements & consequences)

Characteristic	Preventive (proactive)	Corrective (reactive)
Knowledge	Requires more knowledge about the assets (e.g., frequent inspections)	No knowledge is required
Traffic	Pre-planned and less expensive losses of traffic (e.g., maintenance windows)	Unplanned and more expensive losses of traffic (e.g., delay, accidents)
Work	Shorter and less expensive maintenance work (labour and material)	Longer and more expensive maintenance work (unplanned, time pressure, etc.)

e) PREVENTIVE & CORRECTIVE

- To model (among others) the relation between
 - (Performed) preventive measures
 - (Need for) **corrective** maintenance
- A regression analysis is performed
 - *Corrective* represent, e.g., #failures
 - *Preventive* represent, e.g., #preventive maintenance measures.
 - X holds selected important variables related to
 - Traffic (volume, type of traffic, axle load, etc.)
 - Infrastructure (type/model of S&Cs, etc.).

Asset reliability/performance

Corrective = f(Preventive, X)

3. PRELIMINARY ANALYSIS

- a) Databases
- b) Data (& KOMBI)
- c) Key S&C
- d) Life cycle
- e) Case study

a) DATABASES

- The relevant databases are managed by Trafikverket
- Data are available for different assets, here only related to S&C are selected

Database	Content	Time (interval)
BIS	Infrastructure	In 2021, also in 2014
Bessy	Inspections	Between 2014 and 2021
Ofelia	Failures/delays	Between 2014 and 2021, also from 2003
Lupp	Train traffic	During 2017

a) DATA (& KOMBI)

Data(bases)	Main content (columns)
	Replacement date
Infrastructure 2021	Object number
(BIS)	S&Cs number and model
(513)	 Location, track
	 Maximum allowed speed
	Date
	S&Cs number and model
Inspections 2014-2021	Location
(Bessy)	Inspection type
	S&Cs Component
	 Recommended action
	Date
	Object number
	 S&Cs number and model
Failures 2014-2021	S&Cs Component
(Ofelia)	Location
	Disturbed trains
	Delay
	Recommended action
	Departures & arrivals
Train traffic 2017	Traffic type
(Lupp)	Train vehicles
	Train load & km

b) KEY S&C

- Focus on model 60E-R760-1:15
- Spatiotemporal distribution of S&Cs
- Focus on S&Cs replaced in 2014
- Failures and delays statistics
- #observations (inspections, maintenance measures)
- Train traffic

→ VxInr 133 in Kimstad

25

c) LIFE CYCLE (OF THE SELECTED KEY S&C)

4. CONCLUSIONS

- a) Highlights
- b) Next steps

a) HIGHLIGHTS

- A **methodology** combining different approaches (simulation, regression & LCA) for the evaluation of long-term maintenance of S&Cs
- Consideration of **socio-economic impacts** in the LCCs
- Linking different data sources into a combined database for use in similar LCC studies
- Identifying **key S&Cs** with regards to different characteristics (model, #obs, traffic, etc.)
- Timeline of selected S&Cs for LCA

b) NEXT STEPS

- Mechanical simulations
 - Degradation of S&Cs
- Regression analysis
 - Effect of preventive measures on corrective maintenance
- LCC model combining the simulation results and regression output
 - Evaluation of the LCCs including the socio-economic impacts
 - Comparison of different maintenance strategies for S&Cs

