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Abstract
Passenger origin–destination data is an important input for public transport plan-
ning. In recent years, new data sources have become increasingly common through 
the use of the automatic collection of entry counts, exit counts and link flows. How-
ever, collecting such data can be sometimes costly. The value of additional data col-
lection hence has to be weighed against its costs. We study the value of additional 
data for estimating time-dependent origin–destination matrices, using a case study 
from the London Piccadilly underground line. Our focus is on how the precision of 
the estimated matrix increases when additional data on link flow, destination count 
and/or average travel distance is added, starting from origin counts only. We con-
centrate on the precision of the most policy-relevant estimation outputs, namely, 
link flows and station exit flows. Our results suggest that link flows are harder to 
estimate than exit flows, and only using entry and exit data is far from enough to 
estimate link flows with any precision. Information about the average trip distance 
adds greatly to the estimation precision. The marginal value of additional destina-
tion counts decreases only slowly, so a relatively large number of exit station meas-
urement points seem warranted. Link flow data for a subset of links hardly add to 
the precision, especially if other data have already been added.
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1  Introduction

Passenger origin–destination data is an important input for public transport (PT) plan-
ning. PT demand is summarized in time-dependent origin–destination (OD) matrices, 
which state the number of trips between pairs of stations, i.e., the number of passengers 
from an origin to a destination station per time interval, such as 15-min intervals. The 
knowledge of such matrices may improve the efficiency of PT supply (Pelletier et al. 
2011), e.g., cost-effective timetable designs (Sun et al. 2014), or for studying passenger 
costs from timetable changes to solve track capacity conflicts (Ait-Ali et al. 2020).

In recent years, many PT systems have adopted new technological solutions such 
as automated fare collection (AFC), automated vehicle location (AVL), and vehicle 
weighing systems that measure passenger link flows. These solutions generate useful 
data, e.g., smart card data or automatic vehicle weights, which can be used for OD 
matrix estimation. However, acquiring such data can sometimes be costly, since it often 
requires installation and maintenance of measurement equipment on stations, tracks, 
and vehicles. Having measurements on all stations and links can be prohibitively costly, 
so a PT agency needs to weigh these costs against the benefits of a more precisely esti-
mated OD matrix.

In this study, we investigate how much the precision of an estimated dynamic OD 
matrix for a single train line increases when additional data becomes available. We use 
a case study from the London Piccadilly underground line. Starting with origin counts 
only, we incrementally add data about exit counts, link flows and average trip distance, 
and measure how the precision of the estimated matrix increases with additional data.

We concentrate on the precision of the most policy-relevant variables, namely time-
dependent link flows and station arrival rates, since these determine policy decisions 
such as service frequency (Ait-Ali et al. 2020) and capacity of stations and trains. They 
are also the key variables when analyzing passenger costs and benefits when adjusting 
timetables to solve capacity conflicts with other trains, as explained by Ait-Ali et al. 
(2020).

Our results suggest that entry and exit data alone is far from enough to estimate link 
flows with any precision. Information about the average trip distance adds greatly to 
estimation precision. Moreover, extrapolating from a limited number of destination 
counts or link flow measurements to the rest of the network results in lower added 
value, especially if prior data such as average travel distance is already included. Meas-
uring a relatively large number of link flows and exit stations thus seems warranted.

Section  2 briefly summarizes the large literature on OD estimation. Section  3 
describes the methodology and the case study. Results are presented in Sect. 4, and 
Sect. 5 concludes the paper.

2 � Literature review

The research literature about OD estimation is rich and has a long history that can 
be traced back to the early twentieth century, e.g., with gravity models (Reilly 
1931), entropy maximization (Cesario 1973), and Furness methods (Morphet 1975). 
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Various origin–destination problems appear in many fields of transportation research 
(Doblas and Benitez 2005). Most studies treat the time-independent (or static) prob-
lem (Wang et  al. 2012), but there has been an increasing interest in the (harder) 
time-dependent (or dynamic) version (Cho et  al. 2009; Zúñiga et  al. 2021) which 
is the focus of this paper. This is partly due to increased data availability through 
AFC data, which is valuable for more precise estimation of (dynamic) OD matrices 
(Gordillo 2006). Better OD estimates can be used to improve PT services in various 
ways, for instance by inferring the purpose of the trips (Alsger et  al. 2018), pric-
ing and allocating railway capacity (Ait-Ali et al. 2020), or by estimating in-vehicle 
crowding costs (Hörcher et al. 2017; Yap et al. 2018).

The OD estimation problems also differ in terms of the considered zones and the 
studied type of transport traffic. Some studies looked at the flow of road vehicles 
(Wang et al. 2012) whereas fewer considered passenger flow in PT systems (Alsger 
et al. 2018; Zúñiga et al. 2021) such as buses (Wang et al. 2011), freight (Shen and 
Aydin 2014) or passenger rail (Gordillo 2006). Similar to the study by Wong and 
Tong (1998), this paper focuses on the passenger flow in a commuter rail system.

The formulation of the problem also depends on whether prior (target) matrices 
exist. Many authors assume the existence of such a matrix (Wang and Zhang 2016). 
However, this is not the case in our study and many others (Cho et al. 2009).

Generally speaking, the OD estimation problem consists of finding the most 
probable matrix that is consistent with observations or minimizing the deviation 
from observations. The definition of “most probable” (and “deviation”) leads to dif-
ferent formulations of the objective function and functional constraints, and thus to 
a number of OD estimation models. For instance, deviation functions can be mod-
eled in various ways, e.g., using discrete choice models (Ben-Akiva and Lerman 
1985), generalized least square (Cascetta and Nguyen 1988), Kalman filters (Cho 
et al. 2009), mean least square with entropy (Xie et al. 2011), gravity models (Shen 
and Aydin 2014). Other modeling approaches also exist, such as genetic algorithms 
with entropy (Fu 2012), principal component analysis (Djukic et al. 2012), Bayes-
ian inference (Carvalho 2014), trip chaining (Alsger et al. 2016; Hora et al. 2017), 
Markov chain models (Abareshi et  al. 2019) or artificial neural networks (Zúñiga 
et al. 2021). Due to the continuous development of new approaches, several authors 
summarize and compare many of the different OD estimation models, e.g., Cascetta 
and Nguyen (1988), Abrahamsson (1998), Peterson (2007), Bera and Rao (2011), 
Deng and Cheng (2013), and more recently Alsger (2017) and Li et al. (2018).

In the absence of a target matrix, this paper adopts the entropy maximization 
(EM) principle which is also equivalent to several models such as gravity (Wilson 
1967), minimum information (Van Zuylen and Willumsen 1980) and discrete choice 
models (Mishra et al. 2013). The EM principle originates from the statistical theory 
of probability. In the context of OD estimation, the EM principle relies on the idea 
that there are many possible trip distributions (or system states) and that the most 
probable OD estimate (or state) is the one that maximizes the total entropy (or ran-
domness). Variants of such a formulation have been adopted in many OD estimation 
studies. Fisk (1988) used a similar (time-independent) formulation and considered 
that the choice of the path depends on the total travel time (or congestion). Simi-
larly, Brenninger-Göthe et  al. (1989) used it in a multi-objective program for OD 
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estimation using traffic counts. The same formulation was also more recently used 
by Xie et al. (2011) and Fu (2012).

Different types of data have been used to estimate OD matrices, e.g., cell phone 
network (Wang et al. 2013), tolling (Wang and Zhang 2016), GPS data and travel 
surveys (Ge and Fukuda 2016). In PT systems, the increasing adoption of AFC and 
AVL, and thus the availability of the corresponding smart card data, has led to the 
emergence of new applications based on such data (Nassir et al. 2011; Alsger et al. 
2015), including historical and/or real-time data (Zúñiga et al. 2021).

Such studies focus on different aspects to improve PT planning and its efficiency. 
For instance, some research is about  the estimation (Mosallanejad et  al. 2019) or 
the validation (Alsger et al. 2016) of OD matrices in different PT systems, or more 
particularly about the problem of  trip destinations (Trépanier et al. 2007). Moreo-
ver, different case studies exist from various PT networks around the world. These 
include entry-only and/or entry-exit systems from New York (Barry et  al. 2002), 
Santiago (Munizaga and Palma 2012), China (Chen and Liu 2016) and London 
(Wang et al. 2011). London is also the case study in this paper. Readers interested 
in a summary of the different OD estimation studies using smart card PT data are 
referred to the review paper by Li et al. (2018).

Wang et  al. (2012), one of the only studies on the value of data, looked at the 
additional value of well-located sensors for improving road traffic OD estimates. 
However, although rich, the research literature on PT data does not include, to 
our knowledge, studies that look at the value of knowing such additional data for 
dynamic OD estimation. Hence, the purpose of this paper is to fill this gap in the 
literature by studying the value of smart cards and additional PT data.

3 � Methodology and data

In this section, we describe and formulate the main problem, i.e., the OD estimation, 
the solution method (details in the appendix) and the case study.

Let nt
ij
 be the number of passengers starting from station i in time interval t , going 

to station j . The (dynamic) OD matrix estimation consists of finding a time-depend-
ent origin–destination matrix 

{
nt
ij

}
 that is consistent with observations. This is done 

by estimating the entropy-maximizing matrix (the “most probable” matrix) that is 
consistent with observations of origin counts Ot

i
 , destination counts Dt

j
 , link flows Ft

l
 

and the average trip distance d.
In the following, we assume that origin counts are always available since many 

PT systems collect such data at entry gates. Destination counts, however, are not 
always collected, since equipping exit gates with data collection equipment is costly. 
Link flow measurements require specialized equipment, such as automated vehicle 
weighing. The average trip distance is usually estimated using travel surveys.

From the network and timetable, the travel time matrix �ij can be calculated. Given 
these, the estimated number of arriving passengers at station j in time interval t can be 
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calculated as Σin
t−�ij

ij
 . The estimated flow on link l at time t can be calculated as ∑

i < l

j > l

n
t−𝜏ij

ij
 , where {i < l} denote all stations i preceding link l and {j > l} denote all 

stations succeeding it. Given distances between stations dij , the estimated average trip 
distance is calculated as 

Σijtn
t
ij
dij

Σijtn
t
ij

.

The core question of the paper is how the precision of the estimated matrix improves 
when more and more data become available. Let L be the subset of links where link 
flows are known, and Δ is the subset of stations where exit counts are known. Similar to 
the EM model by Xie et al. (2010) and Fu (2012), the studied dynamic OD estimation 
problem is formulated in Eq. (1).

The central question can now be stated as: By how much is the precision of the esti-
mated OD matrix nt

ij
 improved when additional data becomes available, i.e., when the 

sets Δ and L become larger?
We must thus define what kind of “precision” we are interested in. In applied policy-

making, e.g., timetable design and investments in links or stations, the exact cells of the 
OD matrix are less important. What matters most are station flows and link flows, since 
this determines the crowding levels in vehicles and stations. This is used for decisions 
about link and station capacity upgrades, station staff planning, and timetable design 
(timetable optimization depends mainly on passenger departure and arrival rates per 
line segment, and on crowding levels on different links). Hence, we will concentrate on 
how close to reality the estimated OD matrix is in terms of link flows and arrival rates 
per station (origin rates are assumed to be known). We thus measure the relative root 
mean square error (or deviation) for link flows ( RMSElink) and arrival rates at destina-
tion stations ( RMSEdest) , and study how these vary with more available information 
such as when the sets of available link flows and destination counts, L and Δ , become 
larger.

Let D̂t
j
=
∑

in
t−�ij

ij
 be the estimated number of passengers arriving at station j and 

time interval t, and �Ft
l
=
∑

i < l

j > l

n
t−𝜏ij

ij
 the estimated link flow on link l and time interval 

t . The relative errors are then defined as in Eqs. (2) and (3).

(1)

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
nt
ij
≥0

∑
ijt

�
nt
ij
log

�
nt
ij

�
− nt

ij

�

∑
jn

t
ij
= Ot

i
; ∀i, ∀t (1.1)∑

in
t−𝜏ij

ij
= Dt

j
; ∀t, ∀j ∈ Δ (1.2)∑

i < l

j > l

n
t−𝜏ij

ij
= Ft

l
; ∀t, ∀l ∈ L (1.3)

∑
ijt n

t
ij
dij

Σijtn
t
ij

= d (1.4)

nt
ii
= 0; ∀i

.
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For those stations and links where data is available ( j ∈ Δ and l ∈ L ) the errors 
will of course be zero (assuming that the optimization problem is feasible). The 
errors hence measure the deviations for the unobserved stations and links—in other 
words, how well the available station and link data can be extrapolated to unob-
served stations and links.

Table 2 lists the different combinations of destination counts, link flows and aver-
age travel distance that we will explore.

3.1 � Solution method

The EM estimation model is a convex (nonlinear) minimization program with a non-
linear objective function (the total entropy) and linear constraints. Finding a solution 
for time-dependent real-world instances (e.g., large networks and/or longer periods) 
is generally hard. Thus, instead of using state-of-the-art solvers, we derive the itera-
tive solution methods using Lagrangian relaxation.

We first relax the constraints and associate corresponding Lagrangian multipli-
ers as presented in Table 1. This leads to the formulation of a Lagrange function (or 
relaxed dual objective function). More details can be found in the Appendix.

Using first-order optimality conditions on the Lagrange function, we can formu-
late the (primal) solution, i.e., OD estimate as a function of the (dual) Lagrangian 
multipliers. Depending on the studied data, we find different solution formulations 
of the dynamic OD estimate nt

ij
 . Table 2 presents the formulations for the different 

studied variants. A more detailed derivation of these solution formulations is 
described in the appendix.

To estimate the multipliers, we use the problem constraints. In some trivial 
cases, it is possible to find a closed-form expression such as in the basic O model 

(2)RMSEdest =

√
Σjt

(
D̂t

j
− Dt

j

)2

√
Σjt

(
Dt

j

)2

(3)RMSElink =

�∑
lt

�
F̂t
l
− Ft

l

�2

�∑
lt

�
Ft
l

�2

Table 1   Lagrangian multipliers 
and the corresponding relaxed 
constraints

Constraint(s) Description Lagrangian multiplier(s)

(1.1) Origin counts �it; ∀i,∀t

(1.2) Destination (or exit) counts �jt; ∀t,∀j ∈ Δ

(1.3) Link flow counts �lt; ∀t,∀l ∈ L

(1.4) Average travel distance �
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where 
∑

jn
t
ij
= Ot

i
⇒ nt

ij
= e�it =

Ot
i

�S�−1 , i.e., all destinations have a similar attractiv-
ity. In other (more interesting) cases, this is often difficult (sometimes impossi-
ble). Thus, we attempt to find numerical solutions by iteratively balancing the 
relaxed constraints corresponding to additional studied data. Figure 1 is an exam-
ple of an iterative algorithm to find the numerical solution of the multipliers for 
the O-d model. More details about the iterative algorithms can be found in the 
Appendix.

The iterative solution algorithm stops when the constraints are satisfied, up to 
a certain tolerance � . Note that the use of the (hard) constraint of origin counts 
(from smart cards) to derive an analytic expression of the dynamic OD estimate 
yields the formulation in (4).

Table 2   Solution models and formulations of different variants

Variant Model Formulation

O Origin counts only, for all stations (basic model) e�it

O-d Origin counts (for all stations) and average travel 
distance

e�it+�dij

O-D Origin counts (for all stations) and destination counts 
for a subset of stations Δ

{
e
�it+�j,t+�ij ; j ∈ Δ

e�it ; j ∉ Δ

O-d-D As O-D plus average travel distance {
e
�it+�dij+�j,t+�ij ; j ∈ Δ

e�it+�dij ; j ∉ Δ

O-F Origin counts (for all stations) and link flows for a 
subset of links L

{
e�it+�lt ; l = (i, j) ∈ L

e�it ; l = (i, j) ∉ L

O-D-F As O-F but with destination counts for all stations
{

e
�it+�lt+�j,t+�ij l = (i, j) ∈ L

e
�it+�j,t+�ij ; l = (i, j) ∉ L

O-d-D-F As O-D-F plus average travel distance
{

e
�it+�dij+�lt+�j,t+�ij ; l = (i, j) ∈ L

e
�it+�dij+�j,t+�ij ; l = (i, j) ∉ L

Fig. 1   Iterative algorithm for the O-d variant
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The term p(j|i, t) can be seen as the probability of choosing destination j when 
departing from origin i at time interval t . In this case, the exponent ut

ij
 can be inter-

preted as the total utility for traveling to j from i during time interval t . Such utility 
may include parameters k(1)

ijt
,… , k

(m)

ijt
 corresponding to m types of additional data, if 

available. The coefficients (or multipliers) �1,… , �m are estimated to reflect utilities 
(if � ≥ 0 ) or disutilities (if not). The constant Kt

j
 is specific to the destination station 

j and time interval t.
Such interpretation can also be found in discrete choice models (without the ran-

dom error term) where the discrete choices are between the different destination sta-
tions j given an origin i . The (alternative-specific) constants Kt

j
 and parameters 

�1,… , �m are specific to the PT system where the OD estimation is performed. They 
need to be estimated to reflect the (dis-)utilities explaining the choice of the passen-
gers. It is possible to estimate the values of these parameters using additional data, 
e.g., from smart cards, stated (or revealed) preference surveys, old OD or target 
matrices from the same PT system.

3.2 � Case study data

To explore the question formulated above, we use a case study based on the London 
Piccadilly underground line. Transport for London (or TfL) provides open access 
to a comprehensive multi-rail demand dataset as part of the NUMBAT project (TfL 
2018). Based on the use of smart cards at entry/exit station gates during a typical 
2018 autumn weekday, the dataset provides information about the number of passen-
gers boarding and alighting at each station (per 15 min), and link flows (per 15 min) 
for a subset of the links (data for around 100 links are available, but we study 12 of 
the most crowded links). The data also contains an estimated OD matrix for longer 
time periods which is used in this case study to calculate the average travel distance.

The Piccadilly line (Fig. 2) is more than 70 km long and consists of 53 stations 
with two different western branches at Acton Town station. Note the one-way trajec-
tory around the Heathrow airport from/to Hatton Cross through terminal 4 then 2 
and 3.

In Fig.  3, stations are sorted according to their location on the studied line to 
make it easy to visualize the symmetry of the distance matrix. However, the matrix, 
as shown in the figure, is not completely symmetric, see around the airport due to 
the previously mentioned one-way trajectory.

To calculate the average travel times �ij , we use the travel distances between each 
pair of stations which is illustrated in Fig. 3. We assume that all trains are running 
according to the train timetable (headways) presented in Table 3, and that their aver-
age speed is 33 km/h (TfL 2018).

(4)

nt
ij
= Ot

i
p(j�i, t)

where p(j�i, t) = e
ut
ij

∑
j e

ut
ij

and ut
ij
= Kt

j
+ �1k

(1)

ijt
+…+ �mk

(m)

ijt
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As presented in Table 3, we focus in this study on three different time periods, 
i.e., morning and afternoon (peak) as well as midday (off-peak). These periods are 
also illustrated in Fig. 4 which also shows the variation of both the origin (boarders) 
and the destination or exit (alighters) counts per 15-min time interval over the day. 
The studied time periods are separated by dashed vertical lines in the figure.

In addition to the temporal variation (per time interval) of the number of board-
ers and alighters as shown in Fig. 4, we present the spatial variation (per station) in 
Fig. 5 over the day. The stations on the horizontal axis are sorted by the number of 
alighters (from highest). Figure 6 presents the link flows during the day for three of 
the largest links.

The average travel distance per passenger d is usually estimated from demand 
travel surveys. For our case study, we calculate it based on the available OD matri-
ces (per time period). Table 4 shows the average travel distance in km per passenger 
for the different studied time periods of the day.

4 � Results

In this section, we present results on how the precision of the estimated matrix 
varies when more data is included in the estimation. We focus on the precision of 
arrival rates at destination stations and link flows. Several scenarios with different 

Fig. 2   Piccadilly line of the London commuter network
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types of additional data are tested. Table 5 presents an overview of the reported 
results, i.e., tested models and the corresponding presented estimation errors.

Two types of data are incrementally added, i.e., destination and link data. The 
value of such additional data is studied by testing different estimation models. 
The average travel distance is also studied in certain models.

Fig. 3   Travel distances (in km) between the different pairs of stations

Table 3   Train headways in the 
studied time periods for both 
directions (TfL 2018)

Peak Off-peak
i.e., morning (7.00–10.00) and 
afternoon (16.00–19.00)

e.g., midday 
(10.00–
16.00)

Main 5/2 min 5 min
Branches 5 min 10 min
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Fig. 4   Temporal variation of the total number of boarders and alighters

Fig. 5   Spatial variation of the total number of boarders and alighters

Fig. 6   Temporal variation of the passenger flow in three of the most crowded links

Table 4   Average travel distance 
(in km per pax) for the different 
periods

Period Average travel 
distance (km per 
pax)

Morning (peak) 9.7
Midday (off-peak) 8.6
Afternoon (peak) 9.1
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Note that when incrementally including link flows in O-D-F and O-d-D-F, exit 
counts (destination data) from all stations are considered unlike other models (i.e., 
O-D and O-d-D variants) where these are also incrementally included.

4.1 � Estimating arrival rates per station

We first focus on the destination estimation, i.e., the number of alighters in the 
system per 15-min interval and station. Figure  7 shows how the relative error 
( RMSEdest) varies when data for more and more stations is added. Stations are sorted 
according to their total number of alighters, and for each step along the x-axis, data 
for one additional station is added. The RMSEdest error is presented separately for 
three parts of the day (morning, midday and afternoon). When data for all destina-
tions has been added, the error is of course zero.

Surprisingly, including a relatively small number of destinations increases the 
error for both the midday and afternoon periods. Only after a certain amount of des-
tination data has been added does the error decrease. Adding the average travel dis-
tance data in the estimation further reduces the relative error (up to 50%). For the 
midday and afternoon periods, just adding the average travel distance decreases the 
error by as much as adding data for almost all destinations but without the average 
distance.

These results suggest that having data only for a subset of destinations is some-
times not enough—in fact, it may even increase the overall error, e.g., midday and 
afternoon periods. Having enough exit counts seems to be important to get better 
estimates. However, systems for collecting such larger amounts of data are often 
expensive, e.g., design, operation and maintenance. Thus, the importance of com-
paring the data collection costs and value for alternative types of data, e.g., average 
trip distances which seems to be highly valuable here.

With a focus on the O-F model, Fig. 8 shows how RMSEdest varies when incre-
mentally adding link flow data from 12 of the most crowded links. The error is pre-
sented for the three-time periods of the day, and links are sorted and added according 
to their passenger flows. The order of added links may differ between the different 
periods, see later in Fig. 10, for the specific added links.

Including link flow data does not seem to always reduce the destination error. 
It increases during midday peak hours whereas it remains almost constant in the 
afternoon. The exception is the morning period as the error is slightly reduced when 
more links are added.

Table 5   Overview of the tested 
models and the presented 
estimation errors

Tested models Estimation error

Destination data incre-
mentally added

Link flow data incremen-
tally added

O-D, O-d-D O-F RMSEdest

O-D, O-d-D O-F, O-D-F, O-d-D-F RMSElink
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The results indicate that detailed (often expensive) data such as link flows are 
not always valuable. It is therefore important to investigate (cheaper) complemen-
tary data types that can improve the quality of the estimates. Later in Fig. 10, we 
study the combination with other additional data, i.e., average travel distance and 
exit counts.

Fig. 7   Variation of RMSEdest as destination data is incrementally added
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4.2 � Estimating passenger flows per link

Figure  9 (similar to Fig.  7) shows how the link flow error RMSElink varies when 
additional destination data is incrementally added, i.e., O-D and O-d-D mod-
els. Unlike Fig. 7 which presents the deviation errors of the (more aggregate) exit 
counts, Fig. 9 shows the error for the (more detailed) link flows between the studied 
OD pairs. Thus, the errors are higher in Fig. 9.

Even after all exit counts have been included, the link flow error is far from zero. 
In fact, adding destination data hardly improves the link flow estimation, apart from 
the first few destinations. As above, information about the average trip distance 
greatly decreases the error. Surprisingly, however, adding more destination data 
tends to increase the error in this case. Therefore, better (and more economical) esti-
mates of link flows can be reached by combining different types of data and by using 
the right (amount of) data points.

To get decent precision in the link flow estimation, link flow data seems to be 
necessary. Figure 10 shows the change in RMSElink when incrementally including 
flow data for 12 of the most crowded links (as in Fig.  8). The figures show esti-
mations without destination data (O-F), with all destination data (O-D-F), and with 
destination data and average travel distance (O-D-F-d).

In the O-F model, the error decreases with more data, as expected. However, 
although the relative error is lower (than O-F), in models with destination data 
(O-D-F) and average travel distance (O-d-D-F), it remains almost constant when 
link flow data is added. This is the case for all the periods except for the morning 
peak hours where the relative error decreases after adding the 4th link but remains 
constant after.

These results indicate that the marginal value of additional link flow data is high 
only when data such as exit counts and average travel distance are absent. If such 
data exists and is used in the estimation, the value of link flow data becomes almost 
insignificant. It is therefore important to compare the cost of collecting the addi-
tional data with its marginal value. Including more link data can provide further 

Fig. 8   Variation of RMSEdest as link data is incrementally added to the O-F model
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insights, however, the estimation models tend to become more computationally 
expensive.

Fig. 9   Variation of RMSElink as destination data is incrementally added
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5 � Conclusions and future works

Even if the literature includes several studies on (dynamic) OD-matrix estimation, 
this work attempts to assess the marginal value of additional data in terms of estima-
tion precision. The additional data we have studied is arrival rates per station (which 
may be collected through AFC systems or specialized equipment), link flows (which 
may be collected by a vehicle weighing system) and average trip distances (from 
travel surveys). We explore this through a case study based on the London Piccadilly 
line in 2018, separating three time periods of the day (i.e., morning and afternoon 
peak hours, midday). We focus on the precision of the estimated time-dependent 
arrival rates and link flows, rather than on individual cells in the time-dependent OD 
matrix.

The results indicate that arrival rates per destination station (if enough) may 
improve the estimation, but in two cases of three, including data for a subset of des-
tinations made the estimation worse. Perhaps contrary to expectations, it turns out 
to be valuable to have data for a very large share of destinations: the marginal value 
of acquiring more data, even for the last stations, is surprisingly high. Arrival rates 
(exit counts) can be collected easily for AFC systems which are based on “tap-in/
tap-out” (such as London), but for entry-only AFC systems (such as Stockholm), 
special data collection equipment needs to be installed at exit gates. Our results sug-
gest that installing such equipment may only lead to marginal improvements of the 
estimated OD-data unless a large (enough) share of stations is equipped. If such 
equipment is costly, it might be more cost-efficient to consider other forms of data 
collection, and to study the value of the collected data.

Similarly, the study of a subset of added link flows indicates that link estimation 
may improve but only if no prior additional data is already added. Otherwise, the 
estimates are better (than with no prior data) but do not improve with added link 
data. Thus, the marginal value of such detailed data may be insignificant if specific 
prior data is already included. These results show that detailed (often expensive) 
data may have a lower marginal value for the demand estimation and can therefore 
lead to less accurate demand-sensitive policy decisions, e.g., setting welfare-optimal 
line frequencies.

Fig. 10   Variation of RMSElink as link flow data is added incrementally
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Based on a study case, the paper highlights that collecting additional, more 
detailed data (often more expensive) is not always leading to more accurate esti-
mates, i.e., lower marginal value. Thus, the results emphasize the importance of 
considering both the costs of collecting such additional data and its marginal value.

There are a number of possible future works that can further validate these 
results, e.g., using other estimation models, metrics for the valuation of the esti-
mation quality, and by studying additional data sources in other case studies. For 
instance, we used the relative RMSE to quantify the precision of these estimates, 
but other metrics can be tested in future work, such as the implied optimal ser-
vice frequencies (Ait-Ali et  al. 2020), or levels of in-vehicle crowding (Çelebi 
and İmre 2020). Full-day estimation instead of per period can also be tested 
when additional data is lacking. However, assuming that the time-aggregated OD 
matrix is symmetric is a strong assumption, and is for example violated in our 
data set. Furthermore, such full-day estimation also requires additional computa-
tional power and can be intractable for large networks.

Overall, information about average trip distances gives by far the greatest 
improvement of the estimation. Acquiring such estimates, from travel surveys, 
link flow measurements or other means is hence a priority. In this study, we have 
only used one average distance (per time period) for the whole line, but obvi-
ously, getting more detailed data (for parts of the line) would be highly valua-
ble. Furthermore, instead of gradually including data based on the magnitude of 
the counts or flow, other orders can also be tested, e.g., based on job or home 
locations during peak hours. Closely related, the model can be adapted to find 
more valuable data collection strategies, e.g., data types and their spatiotemporal 
locations.

Appendix 1: Solution formulation

The Lagrangian relaxation of the different constraints with the corresponding multi-
pliers leads to the following Lagrange function

The first-order optimality condition for the function L in terms of the variable nt
ij
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Note that the multiplier �j,t+�ij
 is only included if j ∈ Δ , i.e., known data on the 

exit counts at station j . Similarly, �lt is also only included if l = (i, j) ∈ L , i.e., 
known flow at link l . Thus, we have the following general solution formulation

To sum up, depending on the studied additional data, we have different variants 
of the solution formulation as presented in Table 2.

Appendix 2: Iterative algorithm

The iterative algorithm aims at estimating the multipliers, i.e., �,�, � and � . For 
that, each iteration of the algorithm attempts to balance the different constraints until 
these are satisfied (up to a certain error tolerance � ). To derive the algorithms, we 
first use the (hard) constraints for the origin counts ( Ot

i
≠ 0 ) to estimate �it as follows

With smart card data on counts ( Dt
j
≠ 0 ) at large destination stations, we use the 

corresponding constraints to estimate �jt as follows

Similarly, the constraints for additional data on the average travel distance d can 
be used to estimate � by finding the solution (root) of the following equation

When we include additional data on flows ( Ft
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≠ 0 ) at crowded links, we esti-
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The iterative algorithm stops either after a certain number of iterations or when 
all the constraints are satisfied, e.g., using RMSE and an error tolerance �.
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