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Abstract— Hours of service regulations govern the working 

hours of commercial motor vehicle drivers, but these regulations 

may become more flexible as highly automated vehicles have the 

potential to afford periods of in-cab rest or even sleep while the 

vehicle is moving. A prerequisite is robust continuous monitoring 

of when the driver is resting (to account for reduced time on task) 

or sleeping (to account for the reduced physiological drive to 

sleep). The overall aims of this paper are to raise a discussion of 

whether it is possible to obtain successful rest during automated 

driving, and to present initial work on a hypothetical data driven 

algorithm aimed to estimate if it is possible to gain driving time 

after resting under fully automated driving. The presented 

algorithm consists of four central components, a heart rate-based 

relaxation detection algorithm, a camera-based sleep detection 

algorithm, a fatigue modelling component taking time awake, time 

of day and time on task into account, and a component that 

estimates gained driving time. Real-time assessment of driver 

fitness is complicated, especially when it comes to the recuperative 

value of in-cab sleep and rest, as it depends on sleep quality, time 

of day, homeostatic sleep pressure and on the activities that are 

carried out while resting. The monotony that characterizes for 

long-haul truck driving is clearly interrupted for a while, but the 

long-term consequences of extended driving times, including user 

acceptance of the key stakeholders, requires further research. 

 
Index Terms— hours of service regulations, fatigue modelling, 

relaxation detection, sleep detection, vehicle automation, truck 

 

I. INTRODUCTION 

HE hour of service regulations for professional drivers 

provides rules for maximum daily and weekly driving 

times, as well as daily and weekly minimum rest periods. 

As an example, in the European Union (regulation 561/2006), 
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the daily driving period shall not exceed 9 hours, the weekly 

driving time shall not exceed 56 hours, and breaks of at least 45 

minutes (separable into 15 minutes followed by 30 minutes) 

should be taken after 4.5h at the latest, etc. With vehicle 

automation, these rules may be about to change and a more 

flexible, risk management-based approach [1] could be more 

feasible. For example, under automated driving on the 

equivalence of at least SAE level 4, it may be possible to obtain 

rest or even sleep while the vehicle is moving. If recuperative 

rest can be obtained while on the move, it may eventually be 

possible to extend the maximum daily driving period without 

causing worse working conditions or increased crash risk. This 

obviously requires that the operational design domain of the 

automated system allows the driver to disengage for a 

sufficiently long period of time.  

Real-time adaptation of the allowed driving times would 

require a system that continuously monitor the drivers’ fitness 

level and estimates how much the driving time should be 

extended or shortened. In this paper, we outline a first version 

of such a system. The feasibility of the approach is based on 

previous research on the recuperative value of brief sleep 

episodes and rest breaks. According to the theory of sleep/wake 

regulation, sleep reduces sleepiness in a dose-response manner 

and even a brief sleep episode (napping) of only 10-20 minutes 

can improve alertness and sustained attention for the 

subsequent 1–3 hours as long the individual is not suffering 

from sleep deprivation [2-4]. Longer naps of 60–90 minutes 

have stronger beneficial effects, and fatigue may be reduced for 

up to 8 hours [4]. Homeostatic sleep pressure, sleep quality and 

circadian regulation has a strong impact on fatigue and is likely 

to modify the effect of a nap. For example, a nap before the 

circadian low (late night hours) might be less beneficial in terms 
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of more difficulties waking up from sleep than a nap taken 

earlier in the night. It is also unclear if brief naps shorter than 

10 minutes can reduce fatigue and improve performance, even 

though one advantage with very short sleep episodes is the lack 

of sleep inertia [5]. Sleep inertia refers to a state characterized 

by feelings of grogginess and impaired wakefulness that occurs 

immediately after waking-up from sleep. This side effect is 

normally stronger for longer sleep episodes and during night-

time, close to the circadian low [5]. Thus, a 1 to 1.5-hour nap 

may cause severely impaired performance during the first 5 to 

10 minutes after sleep [6, 7].  

Very little research is available on the effect of sleep during 

automated driving, and no results on the recuperative value of 

a sleep episode have been reported. Wörle, et al. [8] did 

however find that the sleep quality obtained while on the move 

(in a moving-base driving simulator) was low, with subjects 

waking up quite often, and with only 3 out of 21 sleep-deprived 

participants reaching deep sleep. Hirsch, et al. [9] found that 

short (15–20 minutes of sleep) naps may potentially be used as 

a countermeasure to sleepiness in Level 4 automation if a take-

over time between one and seven minutes is granted to counter 

sleep inertia. 

The beneficial effect of rest breaks (time off task not 

including sleep) on reduced fatigue and improved performance 

is assumed to be weaker compared to brief sleep periods. 

Previous research suggests that a short (10–20 minutes) rest 

break may temporarily improve performance for a period of 

about 15–20 minutes [10]. It is also likely that a rest break is 

less effective if the driver is sleep deprived [11]. However, 

regular breaks have been linked to decreased accident risk in 

industrial workers and it is likely that breaks reduce time on task 

related fatigue [11, 12]. Regular rest breaks have also been 

found to lower the crash risk for truck drivers [13].  It is not 

clear how the optimal rest break pattern should be organized. 

One assumption is that longer rest breaks are more beneficial 

for performance than brief rest breaks, even though repeated, 

brief, rest breaks may be equally effective as fewer but longer 

rest breaks [14]. 

It is important to note that the type of rest that is needed 

depends on the type of fatigue that the driver experiences [15]. 

If the driver is suffering from high levels of fatigue caused by 

overload, which often occurs in parallel to stress, then adequate 

rest refers to cease driving and temporarily shut off sustained 

attention demands [16]. In comparison, if fatigue is due to 

under-stimulation or boredom, then activation rather than rest 

is required to reduce the level of fatigue. Finally, if fatigue is 

due to sleep deprivation or night-time driving, then sleep rather 

than relaxation and inactivity is needed to recuperate the driver 

[17]. 

In this paper, we outline a first version of a system that 

continuously monitor the drivers’ fitness level and estimates 

how much the driving time should be extended or shortened. 

Fig. 1 provides an overview of the system, with the relaxation 

detection component that measures rest breaks, the sleep 

detection component that measures sleep episodes, a fatigue 

model component that makes use of this information to estimate 

the current and future fatigue level, and a fourth component that 

estimates how much driving time that has been gained by 

resting or sleeping. The aim of this paper is to describe the 

implementation and development of these four components. 

The novelty lies in the presented application and in the full 

system rather than in the individual components.  

Although the full system has been implemented and 

demonstrated in a truck within the ADAS&ME project [18], an 

empirical evaluation of the system is out of scope of the present 

paper. 

II. ALGORITHMIC APPROACH 

An overview of the algorithmic approach is provided in Fig. 

1. The output of the system is a continuous measure that is 

updated in real-time based on data from the previous five 

minutes, representing how much extra driving time that the 

driver has gained by relaxing or sleeping while the truck has 

been driving in an automated mode. The relaxation detection 

component was developed based on an existing dataset with 

100 car drivers, the sleep detection component was essentially 

 
Fig. 1.  Flowchart describing the main components of the suggested system to estimate potentially gained driving time while driving in an automated mode. 
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taken off-the-shelf from a commercial eye tracking provider, 

and the fatigue modelling and driving time components, 

respectively, were designed based on literature. A more detailed 

account of each component is provided in the following 

sections. 

A. Relaxation detection algorithm 

For practical reasons, the relaxation detection algorithm was 

developed based on an existing dataset consisting of 100 car 

drivers. Heart rate and heart rate variability (HRV) metrics were 

used as features to classify manual driving from relaxation 

behind the wheel in a stationary vehicle. Disadvantages with 

this dataset is that it was recorded in a car and not in a truck, 

and that relaxation data were recorded while standing still. A 

major advantage is that the gender distribution is equal, 

something that would have been difficult to achieve in a truck 

driver population.  

1) Dataset: The 100 car drivers were evenly distributed in the 

age groups 20-29, 30-39, 40-49, 50-59 and >60 years, and half 

of the driver group was women. The participants were not 

manipulated in any way and were told to drive as they normally 

do. The experiment took place in the outskirts of Linköping, 

Sweden, and consisted of 40 minutes of driving on suburban 

roads, trunk roads and an inter-urban motorway. The driving 

episodes occurred during daytime between 09.00 and 16.30. 

Before and after the drives, the participants were instructed to 

relax with open eyes for 5 minutes while remaining in the car 

(XC90, Volvo Cars Corporation, Gothenburg, Sweden). The 

data collection was approved by the regional ethics committee 

in Linköping, Sweden (EPN Dnr 2017/508-31), and was 

performed between July 6th and September 26th, 2018. 

2) Pre-processing: An electrocardiogram (ECG, lead II, 

NeXus-10 MKII, Mind Media, Herten, Netherlands) was 

recorded during the experiment. Heart beats were extracted 

from the ECG by extracting the R-peaks as described by 

Afonso, et al. [19]. The time difference between successive 

heart beats (RR-intervals) were converted to normal to normal 

(NN)-intervals according to Karlsson, et al. [20]. The NN time 

series were then divided into 5-min segments, matching the pre- 

and post-drive relaxation events and splitting each drive into 

about 8 segments. Five minutes is the recommended minimum 

duration for short-term HRV analysis [21]. 

Ten standard heart rate variability (HRV) metrics were 

extracted from each segment: mean NN-interval (mean NN), 

standard deviation of NN-interval (SD NN), root mean square 

of successive differences (RMSSD), Poincaré plot standard 

deviation along the line of identity (SD2), absolute power of the 

low-frequency band (LF), relative power of the low-frequency 

band (LF norm), absolute power of the high-frequency band 

(HF), relative power of the high-frequency band (HF norm), 

ratio of LF-to-HF power (LF/HF) and sample entropy 

(SampEn). The low-frequency band was defined as 0.04–0.15 

Hz and the high-frequency power was defined as 0.15–0.4 Hz. 

See Shaffer and Ginsberg [21] for more details about the 

different HRV metrics. 

3) Statistical analysis: A series of mixed model analyses of 

variance (ANOVA) were conducted to verify the effect of the 

experimental design (reduced heart rate and increased HRV 

during relaxation). The 10 HRV metrics were used as 

dependent variables and condition (drive vs. post-drive 

relaxation), gender (male vs. female) and age (20–29, 30–39, 

40–49, 50–59 and 60+ years) were used as independent 

variables. Participant was used as a random factor. The 

significance level was set to 0.05 and Bonferroni corrections 

was used to account for multiple comparisons. 

4) Machine learning procedure: A machine learning pipeline 

was set up with a feature selection step, a classification step and 

an evaluation step. The dataset was split up into a development 

set (70%) and a test set (30%), where the development set was 

used for feature selection and classifier design, while the test set 

was used for evaluation purposes only. This procedure was 

repeated 100 times to obtain an estimate of the generalizability 

of the classifier. A binary classification approach with the two 

target classes drive versus post-drive relaxation was used. Two 

separate algorithms were developed, one using subject-

dependent HRV features (where the pre-drive baseline HRV 

values were subtracted from the relaxation and drive HRV 

values) and one using the subject-independent feature set where 

this normalisation was not carried out. The former approach 

will result in better performance since it accounts for individual 

differences, whereas the latter has the advantage that it works 

out of the box on unseen drivers. 

Feature selection was carried out using Sequential Forward 

Floating Selection (SFFS) [22]. SFFS was wrapped with a 

decision tree classifier, using 5-fold cross-validation, 10 cross 

validation runs and a trade-off between SEN/SPE as 

optimization score. Since SFFS is known to result in low-

dimensional non-redundant feature sets that may be sensitive to 

noisy data, the SFFS procedure was run repeatedly on different 

partitions of the development set. The features that were 

selected in at least 25% of the repetitions were used as the final 

feature set. Note that age and gender were added amongst the 

features since they are known to affect HRV [23]. 

The resulting feature subset was used to classify the data into 

relaxation or drive using a Gaussian support vector machine 

(SVM) classifier. The features were standardized, the box 

constraint level was set to 1 and the kernel scale was set to 2.6. 

A cost function was used to avoid false negatives 

(misclassifications of drive as rest). Otherwise, the standard 

settings from the MATLAB Statistics and Machine Learning 

Toolbox version 11.7 were used (The Mathworks, Natick, MA, 

USA).  

The relaxation algorithm operates on HRV data calculated 

every 10 seconds in a 5-minute sliding window. This provides 

a lower limit to the shortest possible rest episode, which can in 

theory be 10 seconds long, but that is almost always 

considerably longer in practise. The output of the algorithm is 

binary (relaxation versus driving). 

B. Sleep detection algorithm 

In the present version of the suggested system, sleep is 

estimated via closed eyes. Eyes closed detection is provided by 

a camera-based eye tracking system (Smart Eye Embedded, 

Smart Eye AB, Gothenburg, Sweden). Eye closures longer than 

60 seconds are here considered as sleep. The output of the sleep 

detection algorithm is binary (sleep versus awake). 



https://doi.org/10.1109/TITS.2021.3102519 4 

C. Fatigue modelling 

A key component of the envisioned over-all system is a 

biomathematical fatigue model that makes use of the output 

from the relaxation and sleep detection algorithms, in 

combination with homeostatic sleep pressure, to predict the 

current and future fatigue level of the driver. Homeostatic sleep 

pressure is here obtained from bed and rise times stored in the 

personalisation system (Fig. 1).  

The implemented model is based on the sleep/wake predictor 

by Åkerstedt, et al. [24]. The sleep/wake predictor model was 

also complemented with a time on task and task demand 

component [25]. The sleep/wake predictor model has 

previously been validated against objective indicators, such as 

performance, physiological measures, as well as motor-vehicle 

crash risk [24]. 

The sleep/wake predictor estimates the fatigue level based on 

models of sleep/wake homeostasis and the circadian rhythm. 

The homeostatic process S(t) is defined in equation (1), where 

S(t) is constrained by a higher (ah = 14.3) and lower (al = 2.4) 

asymptote. When awake, S(t) takes the level of S at the time of 

awaking, S(ta), as input, and calculates the increase in fatigue (d 

= 0.0353) as a function of time awake (t-ta). During sleep, there 

are two different equations describing the homeostatic process. 

The first describes the part of sleep with high homeostatic 

pressure before a so-called break time tb and the latter equation 

describes the last part of sleep with lower pressure after tb, 

equation (2). These functions take another parameter g ≈ -0.38 

to calculate the recovery of alertness as a function of time asleep 

(t-ts).  

 

𝑆(𝑡) = {

𝑎𝑙 + (𝑆(𝑡𝑎) − 𝑎𝑙)𝑒
−𝑑(𝑡−𝑡𝑎) 𝑖𝑓 𝑎𝑤𝑎𝑘𝑒

𝑆(𝑡𝑠) + 𝑔(𝑡 − 𝑡𝑠)(𝑆𝑏 − 𝑎ℎ) 𝑎𝑠𝑙𝑒𝑒𝑝 𝑎𝑛𝑑 𝑡 ≤ 𝑡𝑏
𝑎ℎ − (𝑎ℎ − 𝑆𝑏)𝑒

𝑔(𝑡−𝑡𝑠−𝑡𝑏) 𝑎𝑠𝑙𝑒𝑒𝑝 𝑎𝑛𝑑 𝑡 > 𝑡𝑏

 (1) 

 

𝑡𝑏 = 𝑡𝑠 +
𝑆𝑏−𝑆(𝑡𝑠)

𝑔(𝑆𝑏−𝑎ℎ)
 (2) 

 

The circadian and ultradian components C(t) and U(t) are 

related to time of day, equations (3) and (4). Process C(t) has a 

period of 24h with a default circadian phase (pc = 18), amplitude 

(ac = 2.5) and mesor (mc = 0). Process U(t) has a period of 12h 

with a default circadian phase (pu = 21), amplitude (au = 0.5) 

and mesor (mu = -0.5). 

 

𝐶(𝑡) = 𝑎𝑐𝑐𝑜𝑠 (
2𝜋(𝑡−𝑝𝑐)

24
) (3) 

 

𝑈(𝑡) = 𝑚𝑢 + 𝑎𝑢𝑐𝑜𝑠 (
2𝜋(𝑡−𝑝𝑢)

12
) (4) 

 

The sleep inertia function W(t) initially increase the fatigue 

level at the time of waking up with 5% of processes S(ta) + C(ta) 

+ U(ta) times an exponential recovery (Wd = -1.51), equation 

(5). 

 

𝑊(𝑡) = 0.05(𝑆(𝑡𝑎) + 𝐶(𝑡𝑎) + 𝑈(𝑡𝑎))𝑒
𝑊𝑑(𝑡−𝑡𝑎) (5) 

 

Task demand and time on task, R(t), is defined in equation 

(6). R(t) deplete during work periods and recover during rest 

breaks. The depletion rate is amplified by task demand (L = 1 

here, but potentially adapted to current traffic conditions) and 

sleep pressure (S(t) + C(t) + U(t)). While driving, the depletion 

rate is defined as Rd = 1.14 and while resting, the recovery rate 

is Rr = 11 according to Peng, et al. [25]. The normalization 

factor Rc = 0.27 limits the task demand “punishment” to about 

2 units on the Karolinska Sleepiness Scale (KSS) [26]. 

 

𝑅(𝑡) =

{
𝑅(𝑡 − 1) − 𝑅𝑐𝑅𝑑𝐿∆𝑡 (1 −

𝑆(𝑡)+𝐶(𝑡)+𝑈(𝑡)−𝑎𝑙

𝑎𝑢−𝑎𝑙
) 𝑑𝑟𝑖𝑣𝑖𝑛𝑔

min (0, 𝑅(𝑡 − 1) + 𝑅𝑐𝑅𝑟∆𝑡) 𝑟𝑒𝑠𝑡𝑖𝑛𝑔
 (6) 

 

The modelled fatigue level is defined according to equation 

(7). The scaling factors approximately transforms the fatigue 

level to a scale similar to KSS. 

 

𝐹𝑎𝑡𝑖𝑔𝑢𝑒(𝑡) = 10.9 − 0.6 (
𝑆(𝑡) + 𝐶(𝑡) +

𝑈(𝑡) +𝑊(𝑡) + 𝑅(𝑡)
) (7) 

 

Note that R(t) has a minimum value of 0, which means that 

relaxation without sleep can only recuperate the driver from the 

task related fatigue that has built up during the drive. To 

recuperate from sleepiness caused by circadian or homeostatic 

effects, only sleep will help. All constants in equations (1)–(7) 

were established empirically in Åkerstedt, et al. [24] and Peng, 

et al. [25]. 

D. Estimation of gained driving time 

The gained driving time is set to 0 if the predicted fatigue 

level, equation (7), in the end of the drive is above the 

equivalence of KSS>=7. If not, the driver can gain the time it 

takes to reach KSS=7, but not more than the sum of two 

piecewise linear models, equations (8) and (9), and no more 

than 120 minutes in total. The threshold was set at KSS=7 for 

several reasons. The verbal anchor of KSS 7 is “sleepy, but no 

effort to keep awake”, which indicates a moderate but tolerable 

level of sleepiness. The first signs of objective sleepiness, such 

as slow eye movements, appearance of alpha waves in the EEG, 

and decreased vigilance performance, normally starts at KSS 

level 7 [26, 27]. Below KSS level 7, physiological sleep-related 

signs are rarely seen.   

The breakpoints in the linear functions in equations (8) and 

(9) are based on available research on the recuperating value of 

resting and napping. There is no strong evidence that a very 

short rest break reduces fatigue other than for a very brief time 

[28]. It was therefore decided that relaxation times shorter than 

10 minutes should not lead to an extension of the driving time. 

Rest breaks of 10–20 minutes may temporarily improve 

performance for a period of about 15–20 minutes [10]. For 

longer rest breaks of about 30 minutes, there is relatively strong 

support for reduced fatigue for 30–60 minutes, via decreased 

time-on-task related fatigue (unless the individual is suffering 

from sleep deprivation) [11, 12, 14]. A long rest break >1h will 

decrease time-on-task related fatigue, but the beneficial effect 

will be shorter if the driver is sleep deprived [11]. 
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𝑔𝑎𝑖𝑛𝑟𝑒𝑙𝑎𝑥(𝑡) =

{
 
 

 
 

0 𝑡 < 10
15 + 1.5(𝑡 − 10) 10 ≤ 𝑡 < 20

30 + 0.375(𝑡 − 20) 20 ≤ 𝑡 < 60

45 + 0.5(𝑡 − 60) 60 ≤ 𝑡 < 90
60 𝑡 ≥ 90

 (8) 

 

The beneficial effect of sleep is assumed to be stronger 

compared to brief rest breaks, and scheduled naps at work has 

been shown to improve performance and decrease fatigue in 

shift workers [29]. According to the two-process theory of sleep 

regulation, recovery is exponential and short sleep episodes (<2 

hours) are more recuperative than the last hours of a normal 

sleep period of 7-8 hours [30]. Since it is not clear if an ultra-

short nap reduces fatigue, we require at least 10 minutes of sleep 

before the driving time is extended. A brief sleep episode of 10-

20 minutes has been shown to reduce fatigue during or at the 

end of the work shift [2-4, 31, 32]. For longer naps of 60-90 

minutes the beneficial effects are even stronger and may last up 

to 8 hours after the nap was terminated [4]. Longer sleep 

episodes that include both deep sleep and REM sleep reduces 

fatigue substantially, but will also cause more severe sleep 

inertia [5]. Exactly how long the beneficial effect of a nap 

during the work shift lasts is not known and the coefficients in 

equation (9) are therefore based on the results outlined above in 

combination with our own experience. 

It was decided that extending the driving time beyond 2 hours 

is undesirable since increased variability of work hours, 

including occasional longer work shift durations, will disturb 

the drivers’ social life situation and possibly also be harmful for 

their long-term health [33, 34].  

 

 

 

𝑔𝑎𝑖𝑛𝑠𝑙𝑒𝑒𝑝(𝑡) =

{
 
 

 
 

0 𝑡 < 10
30 + 3(𝑡 − 10) 10 ≤ 𝑡 < 20

60 + 1.5(𝑡 − 20) 20 ≤ 𝑡 < 40

90 + 0.6(𝑡 − 40) 40 ≤ 𝑡 < 90
120 𝑡 ≥ 90

 (9) 

 

III. RESULTS 

The ANOVA results from the relaxation dataset expectedly 

showed clear interindividual differences in all HRV metrics 

(Table I). There were also clear effects of relaxation versus 

driving and of age in several metrics (Fig. 2). During relaxation 

compared to driving, the mean NN-interval was 54 ms longer, 

RMSSD was 4.3 ms longer, LF was 0.1 ms2/Hz higher, HF was 

0.2 ms2/Hz higher, HF norm was 3.7 % higher, LF/HF was 0.78 

units lower and SampEn was 0.08 units higher.  

When using the HRV metrics as features in a machine 

learning setup, the best feature set according to SFFS consisted 

of gender, age, Mean NN, SD2, LF, LF norm, HF norm, LF/HF 

and sample entropy (Fig. 3). It is interesting that RMSSD is 

excluded, given that RMSSD is supposed to represent 

parasympathetic activity, i.e. rest and relaxation. It is also 

interesting that gender is included, even though subject-

dependent HRV features were used. For subject-independent 

classification, the corresponding best feature set consisted of 

gender, SDNN, RMSSD, LF, HF and HF norm. 

Accuracy, precision, recall, F1 score and a confusion matrix 

from cross-validation of the SVM classifiers are provided in 

Table II and Table III. Note that the relatively high 

performance-ratings are partly a result of the unbalanced 

dataset. Also note that the number of false positives (driving 

classified as relaxation) is low, which reflects the choices made 

when designing the SVM classifier.   

A hypothetical example of the output from the fatigue 

module, fed with data from the relaxation and sleep algorithms, 

is provided in Fig. 4. The example to the left shows a driver 

who has been awake since early morning, but then sleeps from 

13.00 to 17.00 to prepare for the night shift that starts at 19.00. 

After 3h of driving there is a 2h relaxation episode from 22.00 

to 00.00 where the driving time is extended by 1h. The 

relaxation episode effectively resets the time on task effect, 

bringing the estimated fatigue level down to the base 

homeostatic, circadian and sleep inertia levels (it cannot go 

lower than this without actual sleep). From 04.00 to 05.00 the 

TABLE I 
ANOVA RESULTS (F-VALUES) WITH SIGNIFICANT DIFFERENCES AT THE 0.05 

LEVEL (0.005 AFTER BONFERRONI CORRECTION) MARKED WITH *. 

 

 Relax/Drive 
df = (1,792) 

Gender 
df = (1,792) 

Age 
df = (4,792) 

Participant 
df = 

(86,792) 

     

Mean NN 405.03* 0.21 0.63 107.55*      

SD NN 1.29 0.04 6.42* 23.17*      
RMSSD 23.44* 0.00 1.23 82.58*      

SD2 0.58 0.02 11.33* 16.21*      

LF 8.16* 2.14 12.75* 6.55*      
LF norm 3.47 4.26 5.27* 11.72*      

HF 16.45* 0.01 2.45 6.15*      

HF norm 175.22* 10.12* 2.58 16.02*      
LF/HF 27.96* 10.55* 2.27 13.02*      

SampEn 23.37* 7.77 1.57 10.03*      

 

 

 

TABLE II 
PERFORMANCE METRICS FOR THE RELAXATION CLASSIFIER. RESULTS 

PRESENTED AS MEAN ± SD ACROSS THE 100 REPETITIONS. 

 

 Subject-dependent 
classification 

Subject-independent 
classification 

 Average  

score (%) 

Range (%) Average  

score (%) 

Range (%) 

Accuracy 88.72±1.84 84.98–93.43 80.10±2.25 75.37–86.19 
Recall 91.16±1.95 85.50–95.16 81.17±2.18 76.89–86.97 

Precision 96.34±1.67 91.49–100.0 97.45±1.27 94.59–100.0 

F1 93.66±1.12 91.26–96.41 88.55±1.44 94.59–92.46 

 
 

 
TABLE III 

CONFUSION MATRICES FROM THE RELAXATION CLASSIFIERS. RESULTS 

PRESENTED AS MEAN ± SD ACROSS THE 100 REPETITIONS. 

 Subject-dependent 

classification 

Subject-independent 

classification 

 Drive Relaxation Drive Relaxation 

Drive 

177.79±5.01 

Range: 

166 – 191 

6.76±3.12 

Range: 

0 – 16 

206.66±6.52 

Range: 

191 – 227 

5.40±2.67 

Range: 

0 – 12 

Relaxation 

17.26±3.93 

Range: 

9 – 29 

11.19±2.82 

Range: 

5 – 18 

47.93±5.59 

Range: 

34 – 59 

8.01±2.56 

Range: 

3 – 14 
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driver takes a nap while the automated truck is driving. This 

allows the driver to continue driving for the maximum extra 2h. 

The morning nap reduces the estimated fatigue level via the 

homeostatic component. Note that at the end of the nap (05.00), 

there is an increase in the estimated fatigue level that is caused 

by sleep inertia. The blue curve is the estimated fatigue level 

without any sleep or rest episodes. The difference between the 

blue and the orange curve is thus reduced fatigue resulting from 

the rest and sleep episodes. In the example in Fig. 4 (right), the 

driver did not sleep in the afternoon before the night shift 

started. The 2h resting period at 22.00 would have led to an 

extension of the driving time with 60 minutes and the 1h sleep 

episode at 05.00 would have led to an extension of the driving 

time with 102 minutes, totalling 162 minutes according to 

equations (8) and (9). However, since the gained driving time 

cannot be longer than 120 minutes, and above all, since the 

estimated fatigue level is already above the equivalence of 

KSS≥7, the gained driving time is 0 minutes in this case.  

IV. DISCUSSION 

Automated vehicles have the potential to afford periods of 

in-cab rest or even sleep, and the overall aim of this paper is to 

present a first version of a system to effectively manage drive 

times in highly automated vehicles where sleep and rest are 

permitted. Another important aim has been to introduce the 

concept of more flexible drive and rest regulations that takes 

 
Fig. 2.  The mean values of each indicator computed for each of the five age groups for relaxation versus driving. The error bars represent standard error of mean. 
  



https://doi.org/10.1109/TITS.2021.3102519 7 

automated driving aspects into account. To the best of our 

knowledge, the main idea behind this work is novel. I.e., is it 

possible to extend the driving time beyond prescriptive hours of 

service regulation if the driver has been relaxed and exposed to 

low levels of stress, or even has slept during the automated 

drive? If this is possible, the driving task would be less effortful, 

and the driver could extend working with maximum two hours 

without increasing safety (accident) risks. The system, 

assuming that it works, would be a potential useful 

technological component of fatigue risk management systems 

that permit greater operational flexibility. 

The concept of monitoring whether a driver can rest during 

work is controversial, not the least from a legal perspective. One 

of the key challenges is that rest is a complex driver state and 

the recuperative value depends on the activities that are carried 

out while resting [12]. The monotony that is characteristic for 

long-haul truck driving is clearly interrupted for a while, but the 

consequences for the remains of the drive must be further 

investigated. It should be noted that this paper is mostly a 

theoretical contribution and that we have no empirical evidence 

that supports that drivers can sleep and obtain high quality 

recovery during highly automated driving. A thorough 

validation of the proposed system is thus much needed. Such a 

study would require experiments where many drivers’ fatigue 

levels are assessed repeatedly over several consecutive 

workdays. To ensure ecological validity, such a validation 

study would have to be conducted on public roads, either in a 

highly automated truck, or for the time being, in a Wizard of Oz 

setup. 

Another significant challenge refers to the real-time 

measurement of relaxation and sleep. In particular, there are 

unsolved problems related to personalisation (for example, age 

and gender play an important role for detection of relaxation) 

and how to obtain individual information of homeostatic sleep 

pressure. Whereas robust wearable and non-obtrusive sensors 

is one part of the solution, problems remain when it comes to 

time-varying intra-individual variability in the underlying HRV 

data [23, 35]. Using closed eyes as an indirect measure of sleep 

also has its problems, for example the difficulties of 

distinguishing sleep from relaxation with closed eyes, and the 

inability to assess the quality of sleep. This needs to be 

addressed in future research. As a first step, counterfactual 

simulations could be carried out to reveal issues and limitations 

with the biomathematical model, and to simulate the effects of 

sensor loss or miss-classifications. 

A key assumption of high-quality, recuperative rest is that the 

indicators should return to baseline levels (i.e. the same level as 

when work started) when rest is completed [36]. In an 

automated driving setting, rest via sleep can restore the fatigue 

level by affecting the homeostatic drive for sleep. However, 

even if the sleep episode is extended to several hours this will 

not affect the circadian component, so returning to baseline 

levels is something that can only be done when considering 

fatigue and performance over consecutive workdays. Rest via 

relaxation may in turn revoke the negative effects of stress or 

task-related fatigue on neurobehavioral function, if the increase 

in stress due to driving was small to moderate.  

Based on the literature of sleep and rest breaks as 

 
Fig. 3.  Percentage of times that the different features were selected in repeated 

SFFS runs on different partitions of the development set. 
  

 

  

  

  

  

  

  

  

  

  

   

 
  

 
 
  
 
  
 
  
 
  
 
 

 

 
Fig. 4.  Two examples of estimated fatigue level and gained driving time. Left: The driver has been awake since early morning and starts driving at 19.00. After 

2h of driving there is a 2h rest episode from 22.00 to 00.00. From 04.00 to 05.00 the driver is taking a nap. Right: Same as left, but the driver also slept from 

13.00 to 17.00 in the afternoon. 
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countermeasures of fatigue and performance decrements, we 

have estimated the potential beneficial effects on alertness in 

terms of maintaining adequate work performance for an 

extended period of time. However, a hybrid solution based on a 

combination of prescriptive hours of service regulation with a 

more flexible risk management approach is probably needed in 

order to obtain stakeholders’ and drivers’ acceptance, as well as 

to avoid too demanding work hours [1, 34]. Also, it should be 

noted that the prescriptive hours of service-approach, which 

regulates maximum  shift duration, rest time between shifts, and 

rest-breaks within the work shift, has limitations and it is very 

difficult to define rules that take circadian and long-term sleep 

loss into account [1]. 

Further development of the presented system needs more 

basic research on whether it is possible to relax during highly 

automated driving, how relaxation should be measured during 

driving, and how long the beneficial effects of rest remains 

when relaxation and sleep no longer occurs. One important 

modifying factor is the activity during the break. If the driver is 

engaged in mentally demanding (stressful) activities the 

beneficial effects might be weaker, even though there is very 

limited research on type of activity and recovery during a rest 

break. Intake of caffeine during the break may increase the 

beneficial effects and drinking coffee may for some individuals 

be as effective as a nap [2]. 

There are knowledge gaps of the effectiveness of napping at 

various circadian phases and we decided to not take time-of-

day into account when we estimated the effect of sleep during 

automated driving. Furthermore, it is important to gain further 

knowledge on the effects of sleep inertia on driving 

performance when the driver has to handle a take over from 

automatic mode to manual driving. Other limitations that needs 

to be addressed include that (i) the relaxation algorithm was 

developed on passenger car drivers whereas the target 

application is long-haul trucking, and (ii), that the full system 

needs to be evaluated in a naturalistic setting with highly 

automated trucks and with drivers experienced with automated 

driving, especially when it comes to the amount of gained 

driving time. 

V. CONCLUSIONS 

An algorithm that adapts the driving time and rest periods 

during automated driving has been developed. The algorithm 

accounts for driver state by measuring relaxation and sleep in 

real-time. The recuperative value of sleep and relaxation are 

considered, but not the situation “doing something else”. 

Further research is needed to test the full system and to 

investigate the long-term consequences of extended driving 

times, including user acceptance of the key stakeholders. 

Further research is also needed on how the gained driving time 

output is best communicated to the driver, and how this time 

should be logged and accounted for in the electronic record of 

duty status. 

During the current period of disruption to the automotive 

industry, there are several potential applications of the work 

reported here. At its core, we envision such technology to 

support long-haul truck driving applications that include a 

mixture of autonomous and manual driving. An example use 

case could involve driving from a port city over multiple days 

to various urban or regional centers where automated driving is 

either not possible for the full duration of the journey (due either 

to technical limitation or legislative boundaries). 
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