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Abstract— This paper presents initial work on a context-

dependent driver distraction detection algorithm called 

AttenD2.0, which extends the original AttenD algorithm with 

elements from the Minimum Required Attention (MiRA) theory. 

Central to the original AttenD algorithm is a time buffer which 

keeps track of how often and for how long the driver looks away 

from the forward roadway. When the driver looks away the buffer 

is depleted and when looking back the buffer fills up. If the buffer 

runs empty the driver is classified as distracted. AttenD2.0 extends 

this concept by adding multiple buffers, thus integrating situation 

dependence and visual time-sharing behaviour in a transparent 

manner. Also, the increment and decrement of the buffers are now 

controlled by both static requirements (e.g. the presence of an on-

ramp increases the need to monitor the sides and the mirrors) as 

well as dynamic requirements (e.g. reduced speed lowers the need 

to monitor the speedometer). The algorithm description is generic, 

but a real-time implementation with concrete values for different 

parameters is showcased in a driving simulator experiment with 

16 bus drivers, where AttenD2.0 was used to ensure that drivers 

are attentive before taking back control after an automated bus 

stop docking and depot procedure. The scalability of AttenD2.0 

relative to available data sources and the level of vehicle 

automation is demonstrated. Future work includes expanding the 

concept to real-world environments by automatically integrating 

situational information from the vehicles environmental sensing 

and from digital maps. 

 
Index Terms— AttenD, Classification, Detection, Driver 

distraction, Driver state estimation, inattention. 

 

I. INTRODUCTION 

RIVER distraction detection systems are typically 

based on (i) lateral and longitudinal driving performance 

measures, (ii) electrophysiological recordings [1, 2], or (iii) 

gaze information. Category (i) has recently become less useful 

for driver assessment since lateral and longitudinal control are 

at least partially maintained by the vehicle with todays 

advanced driving assistance systems. Category (ii) shows 

imprecise distraction detection performance [3] and requires 

obtrusive sensors to get accurate recordings [4]. Category (iii) 

also has its limitations, the most important being that eye 

tracking only measures foveal vision without accounting for 
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peripheral information acquisition [5]. That said, eye tracking 

is the best approximation of visual attention, especially when 

the eye movements are coupled with their gaze targets.  

There are two lines of research in gaze-based distraction 

detection, a computer vision branch and an attention monitoring 

branch. The computer vision branch aims to extract facial 

features, head pose, gaze direction or non-driving related 

activities (NDRA) from video streams. The output from the 

computer vision branch is then exploited by the attention 

monitoring branch, which aims to estimate if the driver is 

attentive enough or if he/she should be classified as distracted.  

The computer vision branch is prospering thanks to recent 

achievements in machine learning, including deep learning, and 

the availability of open source algorithms and pre-trained 

neural networks for facial feature detection and gaze estimation 

[6]. This has led to improved eye tracking performance and 

higher detection rates of NDRAs such as mobile phone usage 

[1, 7, 8]. However, even if many of these papers have the term 

“driver distraction detection” in the title, their most important 

research contribution is to solve the image processing task of 

estimating gaze direction and detecting NDRA. This research is 

a crucial prerequisite for the attention monitoring branch, but at 

the same time, it also means that these papers end with the 

detection of these behaviours, neglecting the final step of 

estimating the attentional state of the driver in a sufficient way.  

The first attention monitoring or distraction detection 

algorithms were based on the notion that as soon as the gaze is 

directed away from forward or the driver is engaged in an 

NDRA, he or she is immediately considered distracted. This 

goes hand in hand with the driver distraction definitions stating 

that a shift of attention to anything not relevant for driving 

immediately equals distraction, regardless of the outcome of the 

situation [9, 10]. As many practitioners have realised, these 

demands on the driver are unreasonably strict and lead to many 

false distraction detection events. Published gaze-based real-

time algorithms therefore give the driver some leeway by 

granting a certain amount of looking-away time [e.g. 1, 11, 12-

17]. In practise, this is implemented by measuring the time 

spent looking away from the forward roadway. A commonly 

used threshold for the maximum allowed looking-away time is 
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two seconds [12, 18], which is loosely based on the finding that 

glances away from the road are rarely longer than two seconds 

[19-21], and also that glances exceeding two seconds are 

considered dangerous [16, 22]. As indicated, the main 

motivation is to keep the number of distraction classifications 

at a reasonable level. There is no explicit theoretical motivation 

for this grey zone of looking away but not yet being classified 

as distracted, and the threshold value does not change with 

situational complexity. 

The fact that attention monitoring or distraction detection 

algorithms do not take situational complexity into account is a 

general concern with these types of algorithms. “Away from 

forward” is always defined as a fixed region of interest, 

typically implemented as a region surrounding the gaze angle 

representing straight ahead. This fixed definition of straight 

ahead is problematic since it does not allow the driver to look 

sideways when going through intersections, or to look into a 

sharp curve, at least not for more than the granted looking-away 

time. Minor workarounds have been suggested, such as in the 

AttenD algorithm [13], which has a built-in mechanism for 

acknowledging the necessity of mirror and speedometer 

glances, or in the modified percent road centre algorithm, where 

the road centre region is expanded to the left or right depending 

on the curvature of the road [23].  

Given the advancements in environmental sensing in 

combination with theoretical developments in the definition of 

road user attention, it is now time for algorithms belonging to 

the attention monitoring branch to take a step forward. A recipe 

of how modern theory and available data can be merged and 

implemented in a human- and situation-centred attention 

monitoring algorithm is proposed. Since the new approach is 

built on the core concept of the AttenD-algorithm [13], the new 

approach is simply referred to as AttenD2.0. The main 

contribution of this paper is a description of the functionality of 

the proposed algorithm, how these functionalities relate to 

theory, and how AttenD2.0 differs from existing algorithms. 

This is then illustrated by a practical example of a first 

implementation of AttenD2.0 in a simulator environment and a 

general discussion of the benefits, limitations and open 

questions related to the proposed algorithm. 

II. HUMAN- AND SITUATION-DEPENDENT  

DISTRACTION DETECTION 

It would be naive to say that any looking away from the 

forward roadway equals distraction, as some glances toward 

other targets are strictly necessary and other glances do not 

necessarily impede taking in all relevant information [24]. Also, 

in less complex environments, drivers have spare capacity at 

their disposal [25-27], and additional sampling of the forward 

roadway may not lead to an increase in information intake or 

improved situational awareness. Moreover, not sampling 

relevant targets off the forward roadway should also be 

identified as inattention, for example when neglecting to check 

the blind spot before a lane change. A scientifically more 

appealing approach than just claiming that any glance away 

from the forward roadway equals distraction would be to base 

the distraction decision on a human- and situation-centred 

inattention framework that determines whether all necessary 

information has been sampled in a given situation [28]. This 

approach would allow drivers to self-regulate, which influences 

both the information requirements and the available time to 

meet them (see also [29]), thus, incorporating spare capacity in 

a natural way. The drawback is obviously that it is difficult to 

define the minimum requirements for attentive driving in a 

situation-dependent manner. 

AttenD2.0 is an extension of the AttenD algorithm [13, 30, 

31] which brings in elements like context dependency and the 

possibility to self-pace from the Minimum Required Attention 

(MiRA) theory [28]. Central to AttenD2.0, as well as to AttenD, 

is the so-called time buffer which was originally proposed by 

Holmström and Johansson [32] and Karlsson [33], and then 

further developed into the AttenD algorithm by Kircher and 

Ahlstrom [13]. The initial idea was that the driver has a certain 

amount of time at his/her disposal to look away from the road, 

assuming that during that time no relevant knowledge can be 

sampled and existing knowledge decays. When looking away, 

the buffer is depleted and when looking back to the road the 

buffer fills up. If the buffer runs empty the driver is classified 

as distracted. Distraction detection based on the buffer approach 

conveniently incorporates long glances as well as visual time-

sharing behaviour (Fig. 1). This means that a driver is 

considered distracted both when looking away for too long with 

a single long glance, or when frequently looking away without 

sufficiently glancing back at the road in between. In its simplest 

form, the buffer 𝐵[𝑛] is updated according to equation (1), 

where 𝑛 is a sample and 𝑇 is the sampling period. For the 

original AttenD-algorithm the lower limit of the buffer was set 

to 0 and the upper limit to 2 (seconds). In equation (1), the upper 

limit will for now be assumed to be 1 (unitless) because it is 

more convenient in a multi-buffer setting, as will be described 

in section II.A.  

 

𝐵[𝑛] = 𝐵[𝑛 − 1] + {
𝑇 𝑔𝑎𝑧𝑒 ∈ 𝑓𝑜𝑟𝑤𝑎𝑟𝑑
−𝑇 𝑔𝑎𝑧𝑒 ∉ forward

 (1) 

 

The algorithm uses eye tracking data (foveal targets) defined 

in the same coordinate system as an accompanying model of the 

surrounding environment. This world model typically consists 

of static glance targets such as the windscreen, the left and right 

windows, the mirrors, and the instrument cluster. With this 

knowledge about the cockpit of the vehicle, the original AttenD 

algorithm can acknowledge the need to sample from the 

forward roadway as well as the mirrors and the speedometer. In 

practise, this is incorporated by not decreasing 𝐵[𝑛] during the 

first second of glancing at the mirrors and the speedometer. If 

gaze tracking is lost, AttenD switches to head tracking and a 

simplified world model, and if also head tracking is lost, further 

fall-back solutions exist (see [13]). 

Fig. 1 illustrates the similarities and differences between 

AttenD and AttenD2.0. The coloured bar on top indicates the 

foveal information sampling targets of a driver over a time 

while driving along the road sketched at the bottom. A side road 

on the left-hand side is passed after around 6 seconds and a side 

road on the right-hand side is passed at 24 seconds. In both 
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intersections the driver must yield. The driver’s speed profile is 

also included in the figure. Before reaching the side road on the 

right-hand side, the driver decelerates and then picks up speed 

again. 

The AttenD algorithm has no knowledge about these side 

roads. The buffer starts out at the 2 second level with the driver 

sampling from the forward roadway. When the driver starts 

interacting with an NDRA, employing a visual time-sharing 

strategy, the glances towards the additional task are longer than 

the glances forward and so frequent that the buffer gets depleted 

and reaches 0 at the red dot marked “A”. Here the driver is 

classified as distracted. The AttenD buffer increases again when 

the driver has completed the NDRA. For glances to the 

speedometer and mirror that are below 1 second in duration, the 

buffer remains constant (to acknowledge the necessity of mirror 

and speedometer glances). It starts depleting when a 

speedometer or mirror glance is longer than 1 second (around 

19 seconds and 26 seconds into the drive). While glancing to 

the right to check the side road, the buffer gets depleted in a 

similar fashion as for the NDRA, leading to another inattention 

classification shortly before 24 seconds (“B”). Neglecting to 

glance to the left to check for traffic on the first side road does 

not incur any distraction classification in AttenD. 

The figure illustrates some of the shortcomings of the 

original AttenD algorithm. Without knowledge about the 

environment outside of the car, AttenD cannot estimate whether 

a glance to the mirror or speedometer is required or not. AttenD 

therefore implicitly assumes that such glances are always 

necessary if they are below 1 second in duration. Not sampling 

from those targets can never lead to a distraction classification. 

Sampling from other off-forward targets always leads to a 

decrement, regardless of whether the target is a side road or a 

mobile phone. Increment and decrement rates are linear over 

time and do not change, regardless of the driving speed and the 

situational complexity. 

A. Multiple buffers for context dependency  

AttenD2.0 includes multiple buffers, such that each glance 

target of relevance is linked to its own buffer. Some targets and 

their buffers are always present, like the forward roadway and 

the traffic behind via the mirrors. Other targets are intermittent 

and appear based on traffic regulations and the infrastructural 

design, including line of sight. They operationalise the static 

requirements, or “zones”, introduced in the MiRA theory [28]. 

Examples include the need to check for traffic on side roads 

with right of way, like in Fig. 1. The zones within which 

sampling from the side is required are indicated by the pink 

field marked “Zone 1” and the blue field marked with “Zone 2”. 

In those instances, an intermittent additional buffer is activated 

when the vehicle is in the zone. The buffer disappears again 

once the end of the zone is reached. The more concurrent 

buffers there are and the quicker they decrement, the more 

complicated the situation. If any of the buffers runs empty, the 

driver is considered inattentive. With multiple buffers, it 

becomes straightforward to account for visual time sharing 

between several necessary glance targets. 

The multiple buffers are denoted with 𝑖 ∈ [1, 𝐼], where 𝐼 is 

the number of traffic relevant glance targets, equation (2). If an 

overall measure of the driver’s attention level is desired, all 

buffers can be multiplied into a unified value 𝐵[𝑛] = ∏ 𝐵𝑖[𝑛]𝑖 . 

  

𝐵𝑖[𝑛] = 𝐵𝑖[𝑛 − 1] + {
𝑇 𝑔𝑎𝑧𝑒 ∈ 𝑡𝑎𝑟𝑔𝑒𝑡𝑖
−𝑇 𝑔𝑎𝑧𝑒 ∉ 𝑡𝑎𝑟𝑔𝑒𝑡𝑖

 (2) 

 

Returning to Fig. 1, AttenD2.0 classifies the driver as 

inattentive after about 5 seconds when no glances to the left side 

road are detected within the pink zone, marked “C”. Also, like 

the classification made by AttenD, inattention is detected at 

 
 

Fig. 1.  A schematic illustration of the AttenD and the AttenD2.0-algorithms based on fictitious glances. From top to bottom: Glance target legend, passed time, 

glance target progress, AttenD algorithm output, AttenD2.0 algorithm output, AttenD2.0 location based target zones defined according to the MiRA theory (Zone 

1 and 2), infrastructural layout. A, B, C and D mark events where the driver is classified as inattentive. 
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around 11 seconds, marked “D”, due to insufficient forward 

sampling. As the driver samples extensively from the right, the 

blue buffer remains almost at 100% throughout Zone 2. 

Requirements which are related to the infrastructure can 

typically be established based on rules and regulations in 

combination with infrastructural and environmental constraints 

obtained from digital maps. For example, when approaching an 

intersection on a feeder road, one must ensure that the main road 

is clear for passage, and this must be done within a certain time 

frame, starting when the line of sight becomes unobstructed and 

ending just before entering the intersection. First attempts have 

been made to operationalize such static requirements on real 

roads [34, 35] and in simulators [36]. Static requirements, or 

“zones”, are implemented partly using multiple intermittent 

buffers, and by changing the increment and decrement rates in 

relevant buffers in the vicinity of these zones. The latter is 

described in section II.D. 

Neither AttenD nor AttenD2.0 actively incorporate 

information gained from peripheral vision, which is a drawback 

in the currently proposed version. Implications are elaborated 

upon in the discussion section. 

B. Continuous driving task demand weighting 

Requirements which are related to other road users and to 

one’s own movements in relation to the road ahead, do not have 

as clear boundaries as the static requirements. How often 

information must be sampled to maintain an up-to-date mental 

representation varies continuously with the predictability of the 

upcoming traffic situation, where the predictability is 

determined by external factors such as the proximity of 

obstacles and other road users, their speeds, trajectories, and 

degrees of freedom of movement, in the context of 

infrastructural information, road conditions, visibility and 

weather [37-40]. The predictability has implications for how 

fast the buffers should increment or decrement, which can be 

controlled by multiplying the sample period 𝑇 with a weight 

function 𝑤, equation (3). In AttenD2.0, 𝑤 is intended for 

adaptation towards dynamically changing attentional 

requirements due to daylight conditions, precipitation and 

weather, proximity and speed relative to other road users, and 

surrounding road user types and their degrees of freedom. To a 

large extent, such information is already available via sensors 

and threat assessment algorithms in contemporary automated 

vehicles [41].  

As a starting point, AttenD2.0 accounts for self-regulation by 

speed adaptation, equation (4). The buffers 𝐵𝑖[𝑛,𝑤] are now 

dependent not only on time but also on the weight value 

𝑤𝑖[𝑣, 𝑠], which is a function of the current speed 𝑣 (km/h) and 

the speed limit 𝑠 (km/h). Returning to Fig. 1, the speed 

adaptation was illustrated in conjunction with the side road 

from the right, where the decrement rate for forward became 

slower as the speed was reduced. For the same reason, the 

increment rate became faster.  

 

𝐵𝑖[𝑛, 𝑤𝑖] = 

𝐵𝑖[𝑛 − 1,𝑤𝑖] + {
𝑇 ∙ 𝑤𝑖

−1[𝑣, 𝑠] 𝑔𝑎𝑧𝑒 ∈ 𝑡𝑎𝑟𝑔𝑒𝑡𝑖
−𝑇 ∙ 𝑤𝑖[𝑣, 𝑠] 𝑔𝑎𝑧𝑒 ∉ 𝑡𝑎𝑟𝑔𝑒𝑡𝑖

 (3) 

 

𝑤𝑖[𝑣, 𝑠] =
1

2
(2

1

1+𝑒
−0.3(𝑣[𝑛]−𝑠[𝑛]−(10+

𝑠
10))

+

1

1+𝑒
−0.3(𝑣[𝑛]−𝑠[𝑛]+(10+

𝑠[𝑛]
10 ))

) +
1

2
 (4) 

 

The weight function thus allows the driver to buy time by 

lowering the speed [40]. The decrement rate becomes slower 

when the sampling period 𝑇 is multiplied with 𝑤𝑖[𝑣, 𝑠] in 

equation (3), and similarly, the increment rate becomes faster 

when 𝑇 is multiplied with 𝑤𝑖
−1[𝑣, 𝑠]. For example, when 

driving 90 km/h on a 110 km/h road, a buffer that normally runs 

empty in 2 seconds will now take 2.5 seconds to deplete, see 

Fig. 2. When the speed starts to deviate from the speed limit, 

𝑤𝑖[𝑣, 𝑠] first increases/decreases exponentially, but is later 

smoothly limited between 0.5 and 2. The quick 

increase/decrease close to the speed limit is based on the fact 

that the braking distance is proportional to the square of the 

velocity. However, the definitions of the upper/lower limits can 

and should be investigated further. 

 

C. Neural delay latency 

It takes a few tens of milliseconds (ms) for visual information 

to reach the brain, and another about 100 ms for the brain to 

process that information, possibly down to about 50 ms if the 

information is expected and we know what we are looking for 

[42]. The brain compensates for these neural delays through 

prediction [43, 44], allowing the visual system to perceive and 

interact with the environment in real-time [45]. When the 

predictions are wrong, they must be corrected. How predictive 

and corrective processes interact and on what time course(s) is 

yet unknown [46]. In the original AttenD algorithm this neural 

delay was represented by a latency time of 100 ms before the 

buffer was incremented again.  

In AttenD2.0, a latency time 𝑙𝑖, representing either the neural 

delays, or the time it takes to correct a prediction error, is 

incorporated according to equation (5). Different latency times 

𝑙𝑖  are used for different glance targets 𝑖. The nomenclature ≤ 𝑙𝑖 

 
Fig. 2.  Illustration of how the speed adaptation weight function varies with 

speed and speed limit. 
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means that the eyes have been directed to glance target 𝑖 for less 

than 𝑙𝑖 seconds. The default latency time used for forward 

outward regions in AttenD2.0 is 100 ms due to the increased 

likelihood of prediction errors in these regions. For mirror 

regions, the default latency time is set to 50 ms as mirror 

glances are initially intended to just check if something is 

present there or not. 

 

𝐵𝑖[𝑛, 𝑤𝑖 , 𝑙𝑖] = 𝐵𝑖[𝑛 − 1,𝑤𝑖 , 𝑙𝑖] +

{

0 𝑔𝑎𝑧𝑒 ∈ 𝑡𝑎𝑟𝑔𝑒𝑡𝑖 , ≤ 𝑙𝑖
𝑇 ∙ 𝑤𝑖

−1[𝑣, 𝑠] 𝑔𝑎𝑧𝑒 ∈ 𝑡𝑎𝑟𝑔𝑒𝑡𝑖 , > 𝑙𝑖
−𝑇 ∙ 𝑤𝑖[𝑣, 𝑠] 𝑔𝑎𝑧𝑒 ∉ 𝑡𝑎𝑟𝑔𝑒𝑡𝑖

 (5) 

  

D. Increment and decrement rates 

As mentioned, the static requirements are partly incorporated 

with intermittent buffers, but also by changing the increment 

and decrement rates in these buffers. So far, for simplicity, the 

increment and decrement rates of each buffer have been set to 

1. This means that if the driver glances away from region 𝑖 for 

more than 1 second it will bring the buffer from full to empty 

(in a visual time-sharing situation with multiple glances away 

from the region, the total time until the buffer runs empty may 

of course be much longer). In the original AttenD algorithm, 

both the increment and decrement rates were set so that the 

buffer would run empty after a 2 second glance. As already 

indicated in the introduction, this threshold was a compromise 

to achieve a satisfactory sensitivity while keeping the 

probability of false distraction detections at an acceptable level.  

AttenD2.0 uses situation and buffer dependent increment and 

decrement rates. An update of the buffer equation is provided 

in equation (6), where the speed of increment/decrement is 

controlled by 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑖[𝑛] and 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑖[𝑛]. 
Note that these parameters are defined both as a function of time 

[𝑛] and buffer 𝑖. This is important since the information content 

that each buffer represents is situation dependent and may thus 

change over time. For example, driving with cruise control 

modifies the need to monitor the speedometer (set 

𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑖[𝑛] to a lower value), a winding road requires 

more monitoring of the forward roadway (set 

𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑖[𝑛] to a higher value), and the presence of an 

on-ramp on a motorway increases the need to monitor the sides 

and the mirrors (set the 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑖[𝑛] to a higher value 

for the regions 𝑖 of interest). As a starting point, and analogue 

to the original AttenD algorithm, 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑖[𝑛] is set to 

0.5 for the buffer linked to the forward roadway. For other 

buffers, such as the mirror buffer, 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑖[𝑛] can be 

set to considerably lower values, i.e. longer time until the buffer 

runs empty. In essence, the 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑖[𝑛] and 

𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑖[𝑛] are used to manipulate static information 

or information that change in a discrete manner, whereas 𝑤 is 

used to adapt to continuously changing demands such as driving 

speed.   

 

𝐵𝑖[𝑛, 𝑤𝑖 , 𝑙𝑖] = 𝐵𝑖[𝑛 − 1,𝑤𝑖 , 𝑙𝑖] +

{

0 𝑔𝑎𝑧𝑒 ∈ 𝑡𝑎𝑟𝑔𝑒𝑡𝑖 , ≤ 𝑙𝑖
𝑇 ∙  𝑤𝑖

−1[𝑣, 𝑠] ∙ 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑖[𝑛] 𝑔𝑎𝑧𝑒 ∈ 𝑡𝑎𝑟𝑔𝑒𝑡𝑖 , > 𝑙𝑖
−𝑇 ∙ 𝑤𝑖[𝑣, 𝑠] ∙ 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑖[𝑛] 𝑔𝑎𝑧𝑒 ∉ 𝑡𝑎𝑟𝑔𝑒𝑡𝑖

 (6) 

 

In the original AttenD algorithm, the buffer increases and 

decreases linearly as a function of time. If the buffers are 

supposed to reflect the attentional level of the driver, this is 

most likely not a true representation. Senders, et al. [47] 

modelled information density as a monotonically decreasing 

exponential function, where greater importance was assigned to 

objects nearby since they require a more immediate response. 

Based on this idea, the buffer equation is updated according to 

equation (7). As before, the inverse of the 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑖[𝑛] 
determines the time for a single glance to bring buffer 𝑖 from 

full to empty. The two parameters 𝜏𝑜𝑓𝑓,𝑖[𝑛] and 𝜏𝑜𝑛,𝑖[𝑛] in 

equations (8) and (9) represent the time since the last glance 

away from and to region 𝑖, respectively. The conditions 

𝑠ℎ𝑖𝑓𝑡 𝑜𝑓𝑓 → 𝑜𝑛 and 𝑠ℎ𝑖𝑓𝑡 𝑜𝑛 → 𝑜𝑓𝑓 make sure that 

𝐵𝑖[𝑛, 𝑤, 𝑙𝑖] continues to increase/decrease from the correct 

amplitude value. 

 

𝐵𝑖[𝑛, 𝑤𝑖 , 𝑙𝑖] =

{
 
 

 
 

𝐵𝑖[𝑛 − 1,𝑤𝑖 , 𝑙𝑖] 𝑔𝑎𝑧𝑒 ∈ 𝑡𝑎𝑟𝑔𝑒𝑡𝑖 , ≤ 𝑙𝑖
𝑚𝑖𝑛(1,1 − 𝑒−𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑒𝑓𝑓𝑖[𝑛]∙𝜏𝑜𝑛,𝑖[𝑛]) 𝑔𝑎𝑧𝑒 ∈ 𝑡𝑎𝑟𝑔𝑒𝑡𝑖 , > 𝑙𝑖

𝑚𝑎𝑥 ( 0,1 + 𝑒
−
𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑒𝑓𝑓𝑖[𝑛]

𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑖[𝑛] −⋯

𝑒
𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑒𝑓𝑓𝑖[𝑛](𝜏𝑜𝑓𝑓,𝑖[𝑛]−

1

𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑖[𝑛]
)
) 𝑔𝑎𝑧𝑒 ∉ 𝑡𝑎𝑟𝑔𝑒𝑡𝑖

  (7) 

 

𝜏𝑜𝑛,𝑖[𝑛] = {

0 𝑔𝑎𝑧𝑒 ∉ 𝑡𝑎𝑟𝑔𝑒𝑡𝑖

−
𝑙𝑛(1−𝐵𝑖[𝑛−1,𝑤,𝑙𝑖])

𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑒𝑓𝑓𝑖[𝑛]
𝑠ℎ𝑖𝑓𝑡 𝑜𝑓𝑓 → 𝑜𝑛 

𝜏𝑜𝑛,𝑖[𝑛 − 1] + 𝑇 ∙  𝑤𝑖
−1[𝑣, 𝑠] 𝑔𝑎𝑧𝑒 ∈ 𝑡𝑎𝑟𝑔𝑒𝑡𝑖

  (8) 

 

𝜏𝑜𝑓𝑓,𝑖[𝑛] =

{
 
 

 
 

0 𝑔𝑎𝑧𝑒 ∈ 𝑡𝑎𝑟𝑔𝑒𝑡𝑖

𝑙𝑛(1+𝑒
−
𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑒𝑓𝑓𝑖[𝑛]

𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑖[𝑛] −𝐵𝑖[𝑛−1,𝑤,𝑙𝑖])

𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑒𝑓𝑓𝑖[𝑛]
−

1

𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑖[𝑛]
𝑠ℎ𝑖𝑓𝑡 𝑜𝑛 → 𝑜𝑓𝑓

𝜏𝑜𝑓𝑓,𝑖[𝑛 − 1] + 𝑇 ∙ 𝑤𝑖[𝑣, 𝑠] 𝑔𝑎𝑧𝑒 ∉ 𝑡𝑎𝑟𝑔𝑒𝑡𝑖

 (9) 
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The increment and decrement rates of each buffer are 

coupled with an increment and a decrement coefficient. The 

𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑒𝑓𝑓𝑖[𝑛] determines for how long, in the time 

span from 0 to 1 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑖[𝑛]⁄ , the buffer should 

remain high before it starts to deplete. Note that the coefficient 

values do not have an impact on when a buffer reaches zero if 

the buffer is depleted with a single long glance. However, 

during visual time-sharing with several glances away from 

region 𝑖, the coefficients will affect the time it takes for the 

buffer to deplete. Examples of how different values of 

𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑒𝑓𝑓𝑖[𝑛] and 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑒𝑓𝑓𝑖[𝑛] affect 

𝐵𝑖[𝑛, 𝑤𝑖 , 𝑙𝑖] are provided in Fig. 3. Low coefficient values ≤ 1 

are suitable for buffers representing regions where visual time-

sharing is an important concept. This includes forward regions, 

regions covering intersections, and similar. With low 

coefficient values, the buffers will start to decrease/increase as 

soon as the driver looks away/back. With higher coefficient 

values the buffer will fill up quickly, thus reducing the 

contribution of glance history in 𝐵𝑖[𝑛, 𝑤𝑖 , 𝑙𝑖]. For buffers 

representing regions that are not sampled very often, such as the 

side mirrors on many roads, it makes sense to use higher 

coefficient values, particularly if a unified attention measure is 

desired. This is because when several non-full buffers are 

multiplied with each other, the product will be very low, 

resulting in an attentional score which is misleadingly low.  

The implementation assumes that the mental model of the 

surrounding environment remains accurate for a while but then 

turns more and more inaccurate. For glance targets with slower 

information decay rate, such as the mirrors in a situation where 

traffic from behind is less relevant, the buffers remain full for a 

long time until they eventually decrease rather quickly. This 

implementation also assumes that much visual information is 

gained initially, and that the rate of new information acquisition 

then slows down. This assumption is in line with research on 

natural scene understanding stating that observers can quickly 

acquire the gist of a scene [48] and that brief views of a dynamic 

road scene can be used to develop representations which enable 

prediction and action [49, 50]. However, at the same time, this 

assumption is in contrast to hazard perception research that 

states that it takes about 7 seconds after an off-road glance to 

detect intrusions [51] and that sub-second viewing times are 

probably too short for processing dynamic traffic scenes [52].   

III. CASE STUDY – AUTOMATIC DOCKING AT BUS STOPS 

This section will exemplify how AttenD2.0 was configured 

in a simulator experiment which investigated automatic 

docking at bus stops [53]. The intention of this feasibility study 

is partly to provide an example with concrete values of different 

parameters and design choices, and partly to showcase how 

AttenD2.0 can be used for real-time inattention detection. Note 

that the experiment was designed to evaluate the bus stop 

docking and depot functionality, where AttenD2.0 is but one 

component, rather than to evaluate AttenD2.0. For the latter 

purpose, it would have been favourable to design an experiment 

as outlined in Fig. 1. Such an experiment was unfortunately out 

of scope in the present project.   

A. Background  

In bus driving, inattention and fatigue are considered to be 

the most common causes of road crashes [55] and crash 

analyses have particularly highlighted “inattention”, “failure to 

yield” and “not in lane” as causes of fatal city bus accidents 

[56]. The sources of distraction causing accidents include those 

that arise from the driving task itself, and those that derive from 

the additional requirements associated with bus operation, such 

as passenger and ticketing-related incidents [54]. The overall 

aim of the case study was to relieve the bus driver from one of 

the most demanding and stressful tasks, i.e. to approach and 

depart from the bus stops. It is hypothesized that by automating 

the docking and depot procedure, many risky situations related 

to vulnerable road users outside the bus, as well as risks 

associated with passenger boarding and unloading, can be 

avoided. However, when automating this procedure, it is crucial 

to make sure that the driver is ready to take back control of the 

bus before exiting the bus stop area. Here, AttenD2.0 was used 

to ensure that the driver was ready. 

B. Methods  

The study was conducted in the VTI Driving Simulator II, a 

high-fidelity moving base simulator with linear lateral motion. 

The visual system consists of a 98-inch ultra-HD monitor 

positioned as close to the windscreen as possible and two 55-

inch HD monitors mounted on each door. The simulator 

software is developed in-house but is based on OpenDRIVE 1.5 

and OpenSceneGraph 3.4. The vehicle model and motion 

cueing software were developed in-house. Eye movements 

were captured with a remote four-camera eye tracking system 

(Smart Eye Embedded, Smart Eye AB, Gothenburg, Sweden), 

measuring the driver’s gaze direction at a rate of 50 Hz. The 

AttenD2.0 algorithm and a Smart Eye interface were 

implemented as addon modules in the simulator software 

environment, both operating at 50 Hz. 

Sixteen professional bus drivers (age 26 – 62 years, 3 

women) with at least 2 years of bus driving experience 

participated in the study. They drove a route with 10 bus stops 

in an urban environment on two occasions. All drives were 

conducted in the afternoon, once after being off duty in the 

 
Fig. 3. Illustration of how different values of  𝑐𝑜𝑒𝑓𝑓 =
𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑒𝑓𝑓𝑖[𝑛] = 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑒𝑓𝑓𝑖[𝑛] change the shape of the buffer 

(here 𝑙𝑖 = 0,𝑤[𝑣, 𝑠] = 1, 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑖[𝑛] = 0.25). 
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morning and once in a split shift condition after an early 

morning shift. Since there were no large differences between 

the conditions the data has been merged in this paper. On each 

occasion, the participants drove a familiarization route (10 

minutes) followed by the experimental route with manual 

driving (15 minutes) versus automated docking (15 minutes), in 

a counterbalanced order. Each participant received 2000 SEK 

(≈200 USD) for participation to compensate for loss of income. 

The study was approved by the regional ethics committee in 

Linköping, Sweden (EPN 2018/421-31). 

Automated docking was implemented as a system-initiated 

function that was activated when approaching the bus stop area. 

The system then asked the driver, by lighting up an LED-strip 

in the steering wheel and around the windscreen and by a subtle 

audio alert, if he/she was ready to hand over control to the bus. 

The driver responded by pressing a button on the steering 

wheel. If the driver agreed, the bus automatically docked at the 

bus stop. When all passengers had boarded/deboarded, the bus 

asked the driver via the LED-strips and the audio alert if it 

should depart. The bus driver agreed by pressing the button on 

the steering wheel. Before leaving the bus stop area, the bus 

informed the driver that it was now time to take back control 

from the bus via an escalating HMI solution. If the driver (a) 

confirmed and (b) was found to be fit to drive according to the 

driver monitoring systems, the system switched from 

automated to manual driving. If the system determined that the 

driver was not fit to drive, the bus initiated a safe stop 

manoeuvre.  

While driving manually between the bus stops, the driver 

performed a visual-manual NDRA in 2 of 10 road stretches. The 

activity was framed as a ticketing machine task, where the 

driver first had to tap a highlighted bar (one out of three) to 

select if the ticket was for a youth, an adult, or a senior 

passenger. This was followed by 6 taps on either of 3 buttons 

which were randomly highlighted. After completion, the ticket 

type bar turned green and the task was completed. The touch 

screen was mounted on the centre stack. 

C. AttenD2.0 implementation 

The AttenD2.0 implementation used in the simulator study 

included five different buffers representing the forward 

roadway, the left mirror, the right mirror, the bus stop and the 

steering wheel. The forward region (FR) was defined as the 

windscreen from top to bottom and from the left A-pillar to the 

rear-view mirror. The 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝐹𝑅[𝑛] and 

𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝐹𝑅[𝑛] were set to 0.5, the 

𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑒𝑓𝑓𝑖[𝑛] and 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑒𝑓𝑓𝑖[𝑛] were set to 1, 

and 𝑙𝐹𝑅 was set to 100 ms. The bus stop (BS) area was defined 

as a square covering the bus stop, located just to the right of the 

forward region, and with the same parameter values as the 

forward region. However, in contrast to the forward buffer, 

𝐵𝐵𝑆[𝑛, 𝑤𝑖 , 𝑙𝑖] was only active from when the bus entered the bus 

stop area until the bus reached the bus stop. The left (LM) and 

right (RM) side-view mirrors were defined as square regions 

surrounding the mirrors. To compensate for eye tracking 

inaccuracies these regions were made about 0.05 meters larger 

on all sides compared to the physical mirrors. Decay rates were 

set to 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝐿𝑀[𝑛] = 1 60⁄  and 

𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑅𝑀[𝑛] = 1 120⁄ . When departing from the 

bus stop, 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝐿𝑀[𝑛] was changed to 1 20⁄ , thus 

requiring the driver to check for traffic from behind before 

exiting the bus stop area and merging back into the main road. 

The increment rate was set so that the mirror buffers were 

immediately filled up after a latency of 50 ms. The last buffer 

included in this experiment was a hands-on buffer, tracking 

when the driver had at least one hand on the steering wheel 

(SW). 𝐵𝑆𝑊[𝑛, 𝑤𝑖 , 𝑙𝑖] is thus based on whether the driver has 

his/her hands on the steering wheel and not on visual 

information intake. This is motivated by the importance of 

having the hands on the steering wheel before lateral control is 

transferred from the bus to the driver. The 

𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑆𝑊[𝑛] was set to 0.5 and the increment rate 

was set to immediately fill 𝐵𝑆𝑊[𝑛, 𝑤𝑖 , 𝑙𝑖] to 1, with 𝑙𝑆𝑊 = 0. All 

buffers were deactivated when approaching the bus stop in 

automated mode, as the driver did not have to be attentive when 

the bus was operating in fully automated mode. The 

𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑒𝑓𝑓𝑖[𝑛] for the mirrors and the steering wheel 

were set to 3. Self-regulation by speed adaptation was 

implemented as per section II.B. In the transition instant, 

control was only transferred back to the driver if at least one 

hand was on the steering wheel, if the combined attention buffer 

𝐵[𝑛] = ∏ 𝐵𝑖[𝑛]𝑖  was non-decreasing and ≥ 0.1, and if the 

driver had checked the left side-view mirror at least once. If the 

driver was found to be inattentive in the transition instant, the 

bus initiated a safe stop procedure. In other parts of the trip, the 

driver was only made aware of a distraction event via a silent 

change in a small emoticon next to the speedometer in the 

instrument cluster. 

D. Results  

A safe stop procedure was initiated on 12 of 320 occasions 

as AttenD2.0 classified the driver as inattentive. Five of these 

safe stops were a direct consequence of eye tracking issues, 

either due to lost tracking or due to poorly estimated gaze 

direction, so that glances to the left mirror were not registered 

as such. The mean ± std 𝐵[𝑛] for the original AttenD algorithm 

and the combined AttenD2.0 output, plotted as functions of 

distance from the bus stop, are provided in Fig. 4. On average, 

the drivers were attentive while approaching the bus stop. There 

is a small decrement in 𝐵[𝑛] after the bus announced that 

automation was available, especially after the escalating HMI 

communicated that it was the last chance to hand over control 

to the bus. To a large extent, the decrease occurred when the 

drivers looked for the confirmation button on the steering 

wheel. A corresponding small dip in the curves is also seen 

when control is given back to the driver when departing from 

the bus stop. The drivers’ attention level gradually increases 

after the standstill at the bus stop. AttenD and AttenD2.0 follow 

similar patterns both when approaching and departing from the 

bus stop, with AttenD varying slightly more. One algorithm-

inherent difference is that AttenD2.0 starts out at 1 upon 

departing from the bus stop, while AttenD starts out with a low 

value. This is due to the integration of automation in AttenD2.0, 

which demands that the driver fulfils certain requirements, like 
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checking the left mirror in the actual case, before the bus hands 

back control to the driver. 

An example showing how the AttenD and AttenD2.0 buffers 

change while one driver is carrying out the ticketing task is 

provided in Fig. 5. Typical visual time-sharing behaviour is 

here seen as intermittent decreases and increases in 𝐵[𝑛] as the 

driver shifts his/her gaze between the NDRA-screen and the 

forward roadway. The mean ± std AttenD and AttenD2.0 

buffers as a function of distance driven, along with the number 

of times that 𝐵[𝑛] = 0 are illustrated in Fig. 6. According to 

AttenD2.0, the drivers were inattentive in 93.8% of the NDRAs 

(8.1% in the matched baselines without NDRA). The mean ± 

std number of distraction events per ticketing task interaction 

was 2.4 ± 1.3 (0.1 ± 0.5 during baseline). Note that two of the 

AttenD2.0 distraction detections arose due to neglect of the 

mirrors, both of which occurred during baseline driving. The 

corresponding percentages for the original AttenD algorithm 

were 95.1% and 6.9%, respectively, and the number of 

distraction detections were 3.5 ± 1.4 during the ticketing task 

and 0.1 ± 0.6 during the matched baseline. The slight reduction 

in the number of distraction detections for AttenD2.0 is mostly 

a consequence of the exponential increment/decrement which 

fills/empties 𝐵𝑖[𝑛] faster/slower in the beginning, which can 

also be seen in Fig. 5. 

E. Discussion  

In the presented case study, the combined AttenD2.0 output 

and AttenD follow rather similar patterns, indicating inattention 

when engaged in the NDRA and showing a rather high level of 

alertness otherwise. AttenD reacts slightly more to the drivers’ 

looking for the confirmation button upon handing over and 

taking back control. This is connected to the fact that in 

AttenD2.0 the distraction classification for off-forward glances 

is slightly delayed, due to the shape of the decrement function, 

and also because mostly the forward buffer is affected, while 

the mirror buffers only decrease slightly. 

During the NDRA execution, the combined AttenD2.0 

output remains at a higher level than AttenD, and overall, the 

number of issued inattention classifications is slightly lower. 

The absolute value of the AttenD2.0 output cannot be compared 

directly with AttenD, as it is a product of several values. 

However, the two are following the same trend with decreasing 

buffers when the NDRA is introduced, followed by much lower 

levels than during baseline driving. This is a sign that the two 

algorithms interpret behaviour in a similar way. There is no 

hard conclusion as to whether AttenD or AttenD2.0 is more 

correct with the number of actual inattention classifications, and 

this number is also dependent on the settings of the different 

functions. It is logical and lends credibility to both algorithms, 

i.e. that there are many more inattention classifications while 

executing the NDRA than when only driving. 

AttenD2.0 can differentiate between inattention to the 

forward roadway and neglecting mirrors and other important 

targets. AttenD2.0 is also more flexible when it comes to 

adapting the algorithm output based on the current demands on 

the driver. In this example with automatic docking at bus stops, 

this flexibility is unfortunately not appropriately demonstrated 

as the demands on the driver are more or less binary, where no 

demands during full automation are contrasted to low demands 

during manual driving and high demands while performing the 

 
 

Fig. 4.  Mean ± std of 𝐵[𝑛] when approaching/departing from the bus stop. The vertical lines indicate when the escalating HMI starts to communicate with the 

driver. Safe stops have been excluded. 

  

                        

            

 

   

   

   

   

 

  
  
 
 

                    

                    
                                

                  

            

 

   

   

   

   

 

  
  
 
 

                       

                                      
                          

                                
                  

         

      

 
Fig. 5.  Examples of 𝐵[𝑛] from AttenD and Attend2.0 when one driver 

performed a visual-manual NDRA (starting at distance=0).  
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ticketing task. In a situation with partial or conditional 

automation, where the attentional requirements on for example 

speed maintenance are reduced, the differences between 

AttenD and AttenD2.0 are expected to be larger. The same 

holds true when moving from the driving simulator scenario 

used here, where the number of concurrent attentional 

requirements was very low, to a less strict and more vivid 

environment. Only in a situation where the driver must time-

share between several relevant information sources will the 

multiple buffers show their true potential. This case study is the 

first implementation of AttenD2.0. The next steps will be to 

evaluate AttenD2.0 in a simulator experiment based on the 

outline in Fig. 1, followed by evaluations in real traffic. 

Only descriptive analyses were made in this case study, and 

no comparisons were made between AttenD2.0 and a driver 

inattention ground truth. In long-term field studies the impact 

of distraction alerts can be investigated in terms of altered visual 

scan patterns or reduced numbers of crashes and critical events 

[30]. Such an approach is not viable in a controlled simulator 

experiment. Another approach is to use NDRA performance as 

a ground truth, or to equal NDRA usage with inattention [e.g. 

12]. However, this approach does not take self-regulation, spare 

capacity, and driver adaptation into account. Using situational 

awareness probes or verbal protocols in the experimental 

protocol can be helpful but will only add information that is 

verbally accessible. Another option is to use some other 

distraction detection algorithm as ground truth. The original 

AttenD algorithm has actually been used as ground truth of 

distraction [57] as well as for attention management [58]. This 

approach does not really solve the ground truth issue though, 

and it hampers further developments in the field, since it is 

impossible to be better than the “ground truth”. How to 

objectively evaluate and compare different distraction detection 

algorithms remain an open question.  

IV. GENERAL DISCUSSION 

Many of the original AttenD-features were compromises 

restricted by the technology available at the time. No 

environmental data, except for the location of the mirror, the 

speedometer and the windscreen were available in real-time. 

AttenD2.0 incorporates several important conceptual changes, 

transforming AttenD into a proactive, situation-sensitive, 

human-centred algorithm. The updates made to the algorithm 

are mainly based on theoretical considerations. The actual 

values for the functions in AttenD2.0 should probably be 

adjusted in future versions as more empirical evidence becomes 

available. There are still issues that need to be solved, both on 

the theoretical and on the practical side. Some of these issues 

can be addressed in future work, while others may be inherently 

more difficult to incorporate in a real-time algorithm. 

A. Decisions on buffer-related features 

By incorporating multiple buffers, adapted to situational 

circumstances, self-regulation and dynamically changing 

demands, AttenD2.0 has the potential to reflect the driver’s 

attention level much better than the rather coarse AttenD 

algorithm. However, this also necessitates that the in-data are 

correct. A fundamental assumption is that much of the 

information needed for driving has to be acquired by central 

vision. The currently active buffers, their relation to the 

surrounding environment, and the factors influencing the 

increment and decrement functions need to be identified 

correctly. Appropriate parameter settings are likely to be found 

in an iterative process including both theory and empirical 

evidence. Thus, the buffers and values presented here are a first 

attempt and are likely to be updated and fine-tuned over time. 

The borders of static zones must be connected to traffic rules 

and physical circumstances, e. g. the possibility to see into side 

roads, over hill crests or through trees and hedges. As a first 

step, this can be done manually site by site, but for a workable 

implementation, this needs to be done automatically, for 

 

 
Fig. 6. The curves show the mean ± std of the AttenD2.0 buffer 𝐵𝑖[𝑛, 𝑤, 𝑙𝑖] as a function of distance driven while performing visual-manual NDRA (red) versus 

during a matched baseline (blue). The red upwards pointing bars represent the number distraction detections during NDRA and the blue downwards pointing bars 

represent distraction detections during the matched baseline. The NDRA starts at distance=0. 
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example based on 3D-models of cities and detailed elevation 

data in the countryside. Driving speed may also influence the 

boundaries of certain zones. For example, in an intersection 

where it is necessary to give way to other traffic, the stopping 

distance will affect the end boundary of the zone. 

The adaptation of the requirements to dynamically changing 

features necessitates that these features are known. Confirming 

that a side road is empty from traffic for the time needed to cross 

it may require only one glance in that direction, but assessing 

whether the gap between a car and a cyclist approaching on that 

same road will be big enough can require multiple glances with 

rather fixed timing. It remains to be determined which level of 

detail is necessary, realistic, reasonable and meaningful. 

Commencing with the static requirements and minimum 

requirements seems like a good start, as a failure to meet those 

requirements can be classified as inattention on well-founded 

theoretical grounds. 

AttenD2.0 as implemented in the case study on automatic 

docking at bus stops assumes that the difference between 

driving speed and the posted speed limit has the same global 

influence on all buffers. This is a simplification that should be 

modified in future versions. It is thinkable, for example, that 

reduced speed requires increased attention to traffic from 

behind, even though it may decrease the demands from forward 

targets. Further differentiations could include whether the 

targets are static, such that a speed reduction allows for more 

sampling time, or dynamic, such that a speed reduction does not 

necessarily have that effect. 

The presented case study already shows that buffers do not 

necessarily need to rely on foveal visual sampling. Here, a 

requirement to hold the steering wheel was used. For higher 

automation, getting back into the driving position could be 

another requirement, and also some form of acknowledgement 

of auditory signals. A possible application of AttenD2.0 to other 

transport modes like cycling would stress the multimodal 

aspects of requirement fulfilment, as cyclists use auditory 

information more than car drivers [59]. This shows in all clarity 

that the confirmation of requirement fulfilment is complicated.  

While eye tracking appears comparatively easy, it can still be 

difficult to tell whether the necessary information could be 

acquired via peripheral vision, and a foveal fixation does not 

necessarily mean that the target was mentally processed. Both 

hazard perception with peripheral vision and a failure to process 

information that should have been seen have been demonstrated 

[50]. Confirming the uptake of auditory information is not 

trivial, and for haptic or position related requirements new 

sensors may need to be developed. For true attention 

monitoring, it would be necessary to assess what the driver 

knows about a given situation and to compare this to what the 

driver should know, and what a driver knows cannot be 

measured directly but has to be deducted from observable data. 

While important and necessary for the implementation of the 

algorithm, this is a problem that affects all driver state 

assessments to some extent and is therefore not discussed in 

detail here. 

B. Comparison of AttenD and AttenD2.0  

The change to multiple buffers is the most crucial update in 

AttenD2.0. It enables the algorithm to become truly situation 

dependent, where the number of concurrent active buffers, in 

combination with their respective decrement rates and weights, 

determine the demand on the driver. Higher numbers of parallel 

buffers and faster decrement rates make it more difficult to 

prevent the buffers from running empty. It also requires a more 

structured glance pattern. Integrating an NDRA becomes more 

difficult in such a situation than when only few buffers with 

slow decrement rates are active. The original AttenD algorithm 

cannot differentiate between varying situational demands. For 

example, an NDRA engagement that leads to a distraction 

classification in an urban intersection would be diagnosed 

equally on an empty rural road.  

Another important aspect of multiple buffers is the 

possibility to identify attentional targets and thereby also the 

source of distraction. In AttenD, it was assumed that all relevant 

attentional targets were roughly in front of the driver, and 

looking away from this region led to a degradation of the 

driver’s level of attention. This is illustrated in Fig. 1 with the 

example of the second intersection. AttenD2.0 recognises the 

need to check side roads, blind spots and other regions away 

from forward, depending on the situation, and even requires the 

driver to do so. Therefore, AttenD2.0 can be much more 

specific in its identification of an attentive driver, and also in 

classifying the type of distraction.  

AttenD operates with time as the fundamental factor 

determining the change in the output. Each time unit of either 

looking to or away from the forward roadway leads to a change 

in the output with the same amount, disregarding the 

theoretically motivated delays. Instead, in AttenD2.0 this is 

modified to reflect information density and decay. As described 

above, the gist of a scene can be acquired within a very short 

amount of time [48-50], whereas filling in the details occurs 

more slowly, which is reflected by the non-linear form of the 

information acquisition function. In a similar way, information 

is not assumed to decay linearly, but that decay accelerates over 

time, influenced both by actual changes in the outside world and 

a growing imprecision in the driver’s mental model. This is 

practically noticeable in visual time sharing, where the same 

time-sharing behaviour leads to a later distraction classification 

in AttenD2.0 as compared to AttenD (see also Fig. 1). 

Self-regulation and dynamic weighting based on task 

demand and driving speed, which is new in AttenD2.0, is also 

meant to reflect the information decay. A faster speed leads to 

quicker changes in the environment, such that information 

becomes outdated and should be updated more frequently. At 

slower speeds, the opposite occurs. This shows also in an 

intuitive manner how the driver can adjust the flow of 

information to a certain extent, which is in line with the concept 

of driving as a partially self-paced task [40]. Self-regulation is 

also part of the multiple buffer approach in that both strategical 

and tactical choices by the driver influence the number and type 

of buffers present. This includes different levels of automation, 

where the presence of adaptive cruise control relieves the driver 

from monitoring the speedometer, but instead introduces the 

https://doi.org/10.1109/TITS.2021.3060168


https://doi.org/10.1109/TITS.2021.3060168  11 

requirement to make sure that the automation functionality is 

operating. 

The output of AttenD consisted of one single value, which 

could in principle be interpreted as a representation of the 

driver’s attentional state. For AttenD2.0, no such intuitive value 

is available. Given the fact that there are always several buffers 

active, but that it is not possible for the driver to sample from 

all targets at the same time, there cannot be a situation where all 

buffers are full simultaneously. Therefore, an average of all 

buffer values does not return a useful measurement. In the case 

study, the product of all values was used instead. This has the 

advantage that when any buffer reaches zero, the unified buffer 

𝐵[𝑛] will be zero as well. On the negative side, using the 

product can be misleading since a higher number of buffers 

automatically leads to a lower overall value as more numbers in 

the interval [0, 1] are multiplied. Also, the unified value of 𝐵[𝑛] 
is highly dependent on the increment and decrement 

coefficients since these parameters control for how long the 

individual buffers will be close to 1. Other options for 

indicating the driver’s overall state of attentiveness can be 

considered. One approach would be to count the percentage of 

buffers under a certain value, another might be a value 

indicating the likelihood that at least one buffer will run empty 

given the circumstances. A unified 𝐵[𝑛] based on these ideas 

could be based on the number and type of buffers present, the 

associated decrement rate and the typical mode of and duration 

needed for information sampling. These options might be more 

representative of an actual risk for inattention than a simple 

product of the values. One illustration of this is a situation 

where a driver ensured the absence of traffic in a side street. No 

additional sampling from that side is necessary, but still, the 

buffer for the side street will decrease over time, even though it 

will not reach zero, as the requirement to scan the side street has 

been fulfilled. A decreasing buffer value will still cause a 

product to decrease, whereas the likelihood for the buffer to run 

empty would be zero. This shows that the way that buffers are 

combined is crucial for meaningful interpretation, and it must 

be observed that information is lost by combining the different 

buffers into one. 

C. Future work  

The goal is to expand the concept from the simulator to real-

world environments by automatically integrating situational 

information from the vehicle’s environmental sensing [60] and 

geospatial databases and digital maps [61]. 

We foresee future work to proceed along several lines: The 

core features of AttenD2.0 need to be specified based on theory 

supported by empirical evidence. Equations, threshold values 

and rates of change will need adjustment based on additional 

empirical data. Automated ways of implementing static zones 

and further down the line also dynamic targets need to be 

developed. Sensors for improved monitoring of driver 

behaviour can boost confidence in state assessment. 

Already today, access to geospatial databases in combination 

with environmental sensing provides the preconditions for the 

automatic implementation of several static zones as well as 

speed, weather and traffic density weighting. Other features, 

like additional intermittent buffers related to dynamic targets 

and the associated continuous task demand weights, are more 

difficult to specify, because the targets’ idiosyncratic nature 

necessitates large-scale data collections for an acceptable 

requirement approximation, at the same time as the dynamic 

targets need to be identified correctly.  

V. CONCLUSIONS 

AttenD2.0 has a stronger anchoring in theory compared to its 

predecessor. The algorithm also has more degrees of freedom 

allowing scalability relative to available data sources and to the 

level of automation. In its most basic form, AttenD2.0 consists 

of a forward buffer and buffers for the mirrors and speedometer, 

with fixed increment and decrement rates and weightings. 

While very similar to the original AttenD, even in this 

implementation AttenD2.0 will differentiate between off-

forward inattention and inattention due to a neglected mirror. 

All additional information that can be implemented will 

improve the performance of the algorithm both with respect to 

inattention detection and classification, especially in terms of 

reduced false detections. This is a substantial advancement and 

can be considered a conceptual U-turn in the underlying theory 

which informs implementation – the goal is to assess attention, 

which leads to distraction identification as a natural and logical 

by-product, instead of trying to detect distraction directly and 

thereby introducing undefined grey-zones in the algorithm 

output. 
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